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Abstract

Document-level relation extraction (RE) poses new challenges
compared to its sentence-level counterpart. One document
commonly contains multiple entity pairs, and one entity pair
occurs multiple times in the document associated with multiple
possible relations. In this paper, we propose two novel tech-
niques, adaptive thresholding and localized context pooling, to
solve the multi-label and multi-entity problems. The adaptive
thresholding replaces the global threshold for multi-label clas-
sification in the prior work with a learnable entities-dependent
threshold. The localized context pooling directly transfers at-
tention from pre-trained language models to locate relevant
context that is useful to decide the relation. We experiment on
three document-level RE benchmark datasets: DocRED, a re-
cently released large-scale RE dataset, and two datasets CDR
and GDA in the biomedical domain. Our ATLOP (Adaptive
Thresholding and Localized cOntext Pooling) model achieves
an F1 score of 63.4, and also significantly outperforms ex-
isting models on both CDR and GDA. We have released our
code at https://github.com/wzhouad/ATLOP.

Introduction
Relation extraction (RE) aims to identify the relationship
between two entities in a given text and plays an impor-
tant role in information extraction. Existing work mainly
focuses on sentence-level relation extraction, i.e., predicting
the relationship between entities in a single sentence (Zeng
et al. 2014; Miwa and Bansal 2016; Zhang, Qi, and Man-
ning 2018). However, large amounts of relationships, such
as relational facts from Wikipedia articles and biomedical
literature, are expressed by multiple sentences in real-world
applications (Verga, Strubell, and McCallum 2018; Yao et al.
2019). This problem, commonly referred to as document-
level relation extraction, necessitates models that can capture
complex interactions among entities in the whole document.
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JD.com, Stanford Data Science Initiative, and the Stanford Artificial
Intelligence Laboratory.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

John Stanistreet was an Australian politician. He was 

born in Bendigo to legal manager John Jepson 

Stanistreet and Maud McIlroy. (…4 sentences…) In 1955 

John Stanistreet was elected to the Victorian Legislative 

Assembly as the Liberal and Country Party member for 

Bendigo. Stanistreet died in Bendigo in 1971.

Subject: John Stanistreet Object: Bendigo

Relation: place of birth; place of death

Figure 1: An example of multi-entity and multi-label
problems from the DocRED dataset. Subject entity John
Stanistreet (in orange) and object entity Bendigo (in green)
express relations place of birth and place of death. The re-
lated entity mentions are connected by lines. Other entities
in the document are highlighted in grey.

Compared to sentence-level RE, document-level RE poses
unique challenges. For sentence-level RE datasets such as
TACRED (Zhang et al. 2017) and SemEval 2010 Task 8 (Hen-
drickx et al. 2009), a sentence only contains one entity pair
to classify. On the other hand, for document-level RE, one
document contains multiple entity pairs, and we need to clas-
sify the relations of them all at once. It requires the RE model
to identify and focus on the part of the document with rel-
evant context for a particular entity pair. In addition, one
entity pair can occur many times in the document associated
with distinct relations for document-level RE, in contrast
to one relation per entity pair for sentence-level RE. This
multi-entity (multiple entity pairs to classify in a document)
and multi-label (multiple relation types for a particular entity
pair) properties of document-level relation extraction make
it harder than its sentence-level counterpart. Figure 1 shows
an example from the DocRED dataset (Yao et al. 2019). The
task is to classify the relation types of pairs of entities (high-
lighted in color). For a particular entity pair (John Stanistreet,
Bendigo), it expresses two relations place of birth and place
of death by the first two sentences and the last sentence. Other
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sentences contain irrelevant information to this entity pair.
To tackle the multi-entity problem, most current ap-

proaches construct a document graph with dependency struc-
tures, heuristics, or structured attention (Peng et al. 2017;
Liu and Lapata 2018; Christopoulou, Miwa, and Ananiadou
2019; Nan et al. 2020), and then perform inference with graph
neural models (Liang et al. 2016; Guo, Zhang, and Lu 2019).
The constructed graphs bridge entities that spread far apart in
the document and thus alleviate the deficiency of RNN-based
encoders (Hochreiter and Schmidhuber 1997; Chung et al.
2014) in capturing long-distance information (Khandelwal
et al. 2018). However, as transformer-based models (Vaswani
et al. 2017) can implicitly model long-distance dependen-
cies (Clark et al. 2019; Tenney, Das, and Pavlick 2019), it
is unclear whether graph structures still help on top of pre-
trained language models such as BERT (Devlin et al. 2019).
There have also been approaches to directly apply pre-trained
language models without introducing graph structures (Wang
et al. 2019a; Tang et al. 2020a). They simply average the em-
bedding of entity tokens to obtain the entity embeddings and
feed them into the classifier to get relation labels. However,
each entity has the same representation in different entity
pairs, which can bring noise from irrelevant context.

In this paper, instead of introducing graph structures, we
propose a localized context pooling technique. This technique
solves the problem of using the same entity embedding for all
entity pairs. It enhances the entity embedding with additional
context that is relevant to the current entity pair. Instead
of training a new context attention layer from scratch, we
directly transfer the attention heads from pre-trained language
models to get entity-level attention. Then, for two entities in
a pair, we merge their attentions by multiplication to find the
context that is important to both of them.

For the multi-label problem, existing approaches reduce
it to a binary classification problem. After training, a global
threshold is applied to the class probabilities to get relation
labels. This method involves heuristic threshold tuning and
introduces decision errors when the tuned threshold from
development data may not be optimal for all instances.

In this paper, we propose the adaptive thresholding tech-
nique, which replaces the global threshold with a learn-
able threshold class. The threshold class is learned with
our adaptive-threshold loss, which is a rank-based loss that
pushes the logits of positive classes above the threshold and
pulls the logits of negative classes below in model training.
At the test time, we return classes that have higher logits than
the threshold class as the predicted labels or return NA if such
class does not exist. This technique eliminates the need for
threshold tuning, and also makes the threshold adjustable to
different entity pairs, which leads to much better results.

By combining the proposed two techniques, we propose a
simple yet effective relation extraction model, named ATLOP
(Adaptive Thresholding and Localized cOntext Pooling), to
fully utilize the power of pre-trained language models (De-
vlin et al. 2019; Liu et al. 2019). This model tackles the
multi-label and multi-entity problems in document-level RE.
Experiments on three document-level relation extraction
datasets, DocRED (Yao et al. 2019), CDR (Li et al. 2016),
and GDA (Wu et al. 2019b), demonstrate that our ATLOP

model significantly outperforms the state-of-the-art methods.
The contributions of our work are summarized as follows:
• We propose adaptive-thresholding loss, which enables the

learning of an adaptive threshold that is dependent on entity
pairs and reduces the decision errors caused by using a
global threshold.

• We propose localized context pooling, which transfers pre-
trained attention to grab related context for entity pairs to
get better entity representations.

• We conduct experiments on three public document-level
relation extraction datasets. Experimental results demon-
strate the effectiveness of our ATLOP model that achieves
state-of-the-art performance on three benchmark datasets.

Problem Formulation
Given a document d and a set of entities {ei}ni=1, the task
of document-level relation extraction is to predict a sub-
set of relations from R ∪ {NA} between the entity pairs
(es, eo)s, o=1...n; s6=o, where R is a pre-defined set of rela-
tions of interest, es, eo are identified as subject and object
entities, respectively. An entity ei can occur multiple times in
the document by entity mentions {mi

j}
Nei
j=1. A relation exists

between entities (es, eo) if it is expressed by any pair of their
mentions. The entity pairs that do not express any relation are
labeled NA. At the test time, the model needs to predict the
labels of all entity pairs (es, eo)s, o=1...n; s6=o in document d.

Enhanced BERT Baseline
In this section, we present our base model for document-level
relation extraction. We build our model based on existing
BERT baselines (Yao et al. 2019; Wang et al. 2019a) and in-
tegrate other techniques to further improve the performance.

Encoder
Given a document d = [xt]

l
t=1, we mark the position of

entity mentions by inserting a special symbol “*” at the start
and end of mentions. It is adapted from the entity marker
technique (Zhang et al. 2017; Shi and Lin 2019; Soares et al.
2019). We then feed the document into a pre-trained language
model to obtain the contextual embeddings:

H = [h1,h2, ...,hl] = BERT([x1, x2, ..., xl]). (1)

Following previous work (Verga, Strubell, and McCallum
2018; Wang et al. 2019b), the document is encoded once by
the encoder, and the classification of all entity pairs is based
on the same contextual embedding. We take the embedding
of “*” at the start of mentions as the mention embeddings. For
an entity ei with mentions {mi

j}
Nei
j=1, we apply logsumexp

pooling (Jia, Wong, and Poon 2019), a smooth version of
max pooling, to get the entity embedding hei .

hei = log

Nei∑
j=1

exp
(
hmi

j

)
. (2)

This pooling accumulates signals from mentions in the docu-
ment. It shows better performance compared to mean pooling
in experiments.
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Binary Classifier
Given the embedding (hes ,heo) of an entity pair es, eo com-
puted by equation (2), we map the entities to hidden states
z with a linear layer followed by non-linear activation, then
calculate the probability of relation r by bilinear function and
sigmoid activation. This process is formulated as:

zs = tanh (Wshes) , (3)
zo = tanh (Woheo) , (4)

P (r|es, eo) = σ (zᵀ
sWrzo + br) ,

where Ws ∈ Rd×d, Wo ∈ Rd×d, Wr ∈ Rd×d, br ∈ R
are model parameters. The representation of one entity is
the same among different entity pairs. To reduce the number
of parameters in the bilinear classifier, we use the group
bilinear (Zheng et al. 2019; Tang et al. 2020b), which splits
the embedding dimensions into k equal-sized groups and
applies bilinear within the groups:[

z1
s ; ...; z

k
s

]
= zs,[

z1
o ; ...; z

k
o

]
= zo,

P (r|es, eo) = σ

(
k∑

i=1

ziᵀ
s W i

rz
i
o + br

)
, (5)

where W i
r ∈ Rd/k×d/k for i = 1...k are model parameters,

P (r|es, eo) is the probability that relation r is associated
with the entity pair (es, eo). In this way, we can reduce the
number of parameters from d2 to d2/k. We use the binary
cross entropy loss for training. During inference, we tune
a global threshold θ that maximizes evaluation metrics (F1

score for RE) on the development set and return r as an
associated relation if P (r|es, eo) > θ or return NA if no
relation exists.

Our enhanced base model achieves near state-of-the-art
performance in our experiments, significantly outperforms
existing BERT baselines.

Adaptive Thresholding
The RE classifier outputs the probability P (r|es, eo) within
the range [0, 1], which needs thresholding to be converted to
relation labels. As the threshold neither has a closed-form
solution nor is differentiable, a common practice for deciding
threshold is enumerating several values in the range (0, 1)
and picking the one that maximizes the evaluation metrics
(F1 score for RE). However, the model may have different
confidence for different entity pairs or classes in which one
global threshold does not suffice. The number of relations
varies (multi-label problem) and the models may not be glob-
ally calibrated so that the same probability does not mean
the same for all entity pairs. This problem motivates us to
replace the global threshold with a learnable, adaptive one,
which can reduce decision errors during inference.

For the convenience of explanation, we split the labels of
entity pair T = (es, eo) into two subsets: positive classes PT

and negative classes NT , which are defined as follows:
• positive classes PT ⊆ R are the relations that exist be-

tween the entities in T . If T does not express any relation,
PT is empty.

Figure 2: An artificial illustration of our proposed adaptive-
thresholding loss. A TH class is introduced to separate posi-
tive classes and negative classes: positive classes would have
higher probabilities than TH, and negative classes would
have lower probabilities than TH.

• negative classesNT ⊆ R are the relations that do not exist
between the entities. If T does not express any relation,
NT = R.

If an entity pair is classified correctly, the logits of positive
classes should be higher than the threshold while those of neg-
ative classes should be lower. Here we introduce a threshold
class TH, which is automatically learned in the same way as
other classes (see Eq.(5)). At the test time, we return classes
with higher logits than the TH class as positive classes or
return NA if such classes do not exist. This threshold class
learns an entities-dependent threshold value. It is a substi-
tute for the global threshold and thus eliminates the need for
tuning threshold on the development set.

To learn the new model, we need a special loss func-
tion that considers the TH class. We design our adaptive-
thresholding loss based on the standard categorical cross
entropy loss. The loss function is broken down to two parts
as shown below:

L1 = −
∑
r∈PT

log

(
exp (logitr)∑

r′∈PT∪{TH} exp (logitr′)

)
,

L2 = − log

(
exp (logitTH)∑

r′∈NT∪{TH} exp (logitr′)

)
,

L = L1 + L2.

The first part L1 involves positive classes and the TH class.
Since there may be multiple positive classes, the total loss
is calculated as the sum of categorical cross entropy losses
on all positive classes (Menon et al. 2019; Reddi et al. 2019).
L1 pushes the logits of all positive classes to be higher than
the TH class. It is not used if there is no positive label. The
second part L2 involves the negative classes and threshold
class. It is a categorical cross entropy loss with TH class
being the true label. It pulls the logits of negative classes to
be lower than the TH class. Two parts are simply summed
for the total loss.

The proposed adaptive-thresholding loss is illustrated in
Figure 2. It obtains a large performance gain to the global
threshold in our experiments.

Localized Context Pooling
The logsumexp pooling (see Eq. (2)) accumulates the em-
bedding of all mentions for an entity across the whole docu-
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BERT 
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BERT
Layer 𝐿 − 1

Context
Pooling

Figure 3: Illustration of localized context pooling. Tokens
are weighted averaged to form the localized context c(s,o) of
the entity pair (es, eo). The weights of tokens are derived by
multiplying the attention weights of the subject entity es and
the object entity eo from the last transformer layer so that
only the tokens that are important to both entities (highlighted
in light yellow) receive higher weights.

ment and generates one embedding for this entity. The entity
embedding from this document-level global pooling is then
used in the classification of all entity pairs. However, for
an entity pair, some context of the entities may not be rele-
vant. For example, in Figure 1, the second mention of John
Stanistreet and its context are irrelevant to the entity pair
(John Stanistreet, Bendigo). Therefore, it is better to have
a localized representation that only attends to the relevant
context in the document that is useful to decide the relation
for this entity pair.

Therefore we propose the localized context pooling, where
we enhance the embedding of an entity pair with an additional
local context embedding that is related to both entities. In
this work, since we use pre-trained transformer-based models
as the encoder, which has already learned token-level depen-
dencies by multi-head self-attention (Vaswani et al. 2017),
we consider directly using their attention heads for local-
ized context pooling. This method transfers the well-learned
dependencies from the pre-trained language model without
learning new attention layers from scratch.

Specifically, given a pre-trained multi-head attention ma-
trix A ∈ RH×l×l, where Aijk represents attention from
token j to token k in the ith attention head, we first take the
attention from the “*” symbol as the mention-level attention,
then average the attention over mentions of the same entity
to obtain entity-level attention AE

i ∈ RH×l, which denotes
attention from the ith entity to all tokens. Then given an en-
tity pair (es, eo), we locate the local context that is important
to both es and eo by multiplying their entity-level attention,
and obtain the localized context embedding c(s,o) by:

A(s,o) = AE
s ·AE

o ,

q(s,o) =
H∑
i=1

A
(s,o)
i ,

a(s,o) = q(s,o)/1ᵀq(s,o),

c(s,o) = Hᵀa(s,o),

where H is the contextual embedding in Eq. (1). The local-
ized context embedding is then fused into the globally pooled

Statistics DocRED CDR GDA

# Train 3053 500 23353
# Dev 1000 500 5839
# Test 1000 500 1000
# Relations 97 2 2
Avg.# entities per Doc. 19.5 7.6 5.4

Table 1: Statistics of the datasets in experiments.

Hyperparam DocRED CDR GDA
BERT RoBERTa SciBERT SciBERT

Batch size 4 4 4 16
# Epoch 30 30 30 10
lr for encoder 5e-5 3e-5 2e-5 2e-5
lr for classifier 1e-4 1e-4 1e-4 1e-4

Table 2: Hyper-parameters in training.

entity embedding to obtain entity representations that are
different for different entity pairs, by modifying the original
linear layer in Eq. (3) and Eq. (4) as follows:

z(s,o)
s = tanh

(
Wshes +Wc1c

(s,o)
)
, (6)

z(s,o)
o = tanh

(
Woheo +Wc2c

(s,o)
)
, (7)

where Wc1 ,Wc2 ∈ Rd×d are model parameters. The pro-
posed localized context pooling is illustrated in Figure 3.
In experiments, we use the attention matrix from the last
transformer layer.

Experiments
Datasets
We evaluate our ATLOP model on three public document-
level relation extraction datasets. The dataset statistics are
shown in Table 1.

• DocRED (Yao et al. 2019) is a large-scale crowdsourced
dataset for document-level RE. It is constructed from
Wikipedia articles. DocRED consists of 3053 documents
for training. For entity pairs that express relation(s), about
7% of them have more than one relation label.

• CDR (Li et al. 2016) is a human-annotated dataset in the
biomedical domain. It consists of 500 documents for train-
ing. The task is to predict the binary interactions between
Chemical and Disease concepts.

• GDA (Wu et al. 2019b) is a large-scale dataset in the
biomedical domain. It consists of 29192 articles for train-
ing. The task is to predict the binary interactions between
Gene and Disease concepts. We follow Christopoulou,
Miwa, and Ananiadou (2019) to split the training set into
an 80/20 split as training and development sets.

Experiment Settings
Our model is implemented based on Huggingface’s Trans-
formers (Wolf et al. 2019). We use cased BERT-base (Devlin
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Model Dev Test
Ign F1 F1 Ign F1 F1

Sequence-based Models
CNN (Yao et al. 2019) 41.58 43.45 40.33 42.26
BiLSTM (Yao et al. 2019) 48.87 50.94 48.78 51.06

Graph-based Models
BiLSTM-AGGCN (Guo, Zhang, and Lu 2019) 46.29 52.47 48.89 51.45
BiLSTM-LSR (Nan et al. 2020) 48.82 55.17 52.15 54.18
BERT-LSRBASE (Nan et al. 2020) 52.43 59.00 56.97 59.05

Transformer-based Models
BERTBASE (Wang et al. 2019a) - 54.16 - 53.20
BERT-TSBASE (Wang et al. 2019a) - 54.42 - 53.92
HIN-BERTBASE (Tang et al. 2020a) 54.29 56.31 53.70 55.60
CorefBERTBASE (Ye et al. 2020) 55.32 57.51 54.54 56.96
CorefRoBERTaLARGE (Ye et al. 2020) 57.35 59.43 57.90 60.25

Our Methods
BERTBASE (our implementation) 54.27 ± 0.28 56.39 ± 0.18 - -
BERT-EBASE 56.51 ± 0.16 58.52 ± 0.19 - -
BERT-ATLOPBASE 59.22 ± 0.15 61.09 ± 0.16 59.31 61.30
RoBERTa-ATLOPLARGE 61.32 ± 0.14 63.18 ± 0.19 61.39 63.40

Table 3: Main results (%) on the development and test set of DocRED. We report the mean and standard deviation of F1 on
the development set by conducting 5 runs of training using different random seeds. We report the official test score of the best
checkpoint on the development set.

Model CDR GDA

BRAN (Verga, Strubell, and McCal-
lum 2018)

62.1 -

CNN (Nguyen and Verspoor 2018) 62.3 -
EoG (Christopoulou, Miwa, and
Ananiadou 2019)

63.6 81.5

LSR (Nan et al. 2020) 64.8 82.2

SciBERT (our implementation) 65.1 ± 0.6 82.5 ± 0.3
SciBERT-E 65.9 ± 0.5 83.3 ± 0.3
SciBERT-ATLOP 69.4 ± 1.1 83.9 ± 0.2

Table 4: Test F1 score (%) on CDR and GDA dataset. Our
ATLOP model with the SciBERT encoder outperforms the
current SOTA results.

et al. 2019) or RoBERTa-large (Liu et al. 2019) as the en-
coder on DocRED, and cased SciBERT (Beltagy, Lo, and
Cohan 2019) on CDR and GDA. We use mixed-precision
training (Micikevicius et al. 2018) based on the Apex library1.
Our model is optimized with AdamW (Loshchilov and Hut-
ter 2019) using learning rates ∈ {2e−5, 3e−5, 5e−5, 1e−4},
with a linear warmup (Goyal et al. 2017) for the first 6% steps
followed by a linear decay to 0. We apply dropout (Srivastava
et al. 2014) between layers with rate 0.1, and clip the gradi-
ents of model parameters to a max norm of 1.0. We perform
early stopping based on the F1 score on the development set.
All hyper-parameters are tuned on the development set. We
list some of the hyper-parameters in Table 2.

For models that use a global threshold, we search threshold
values from {0.1, 0.2, ..., 0.9} and pick the one that maxi-
mizes dev F1. All models are trained with 1 Tesla V100 GPU.

1https://github.com/NVIDIA/apex

For the DocRED dataset, the training takes about 1 hour 45
minutes with BERT-base encoder and 3 hours 30 minutes
with RoBERTa-large encoder. For CDR and GDA datasets,
the training takes 20 minutes and 3 hours 30 minutes with
SciBERT encoder, respectively.

Main Results
We compare ATLOP with sequence-based models, graph-
based models, and transformer-based models on the DocRED
dataset. The experiment results are shown in Table 3. Follow-
ing Yao et al. (2019), we use F1 and Ign F1 in evaluation.
The Ign F1 denotes the F1 score excluding the relational facts
that are shared by the training and dev/test sets.
Sequence-based Models. These models use neural architec-
tures such as CNN (Goodfellow et al. 2016) and bidirectional
LSTM (Schuster and Paliwal 1997) to encode the entire doc-
ument, then obtain entity embeddings and predict relations
for each entity pair with bilinear function.
Graph-based Models. These models construct document
graphs by learning latent graph structures of the docu-
ment and perform inference with graph convolutional net-
work (Kipf and Welling 2017). We include two state-of-the-
art graph-based models, AGGCN (Guo, Zhang, and Lu 2019)
and LSR (Nan et al. 2020), for comparison. The result of
AGGCN is from the re-implementation by Nan et al. (2020).
Transformer-based Models. These models directly adapt
pre-trained language models to document-level RE with-
out using graph structures. They can be further divided into
pipeline models (BERT-TS (Wang et al. 2019a)), hierarchical
models (HIN-BERT (Tang et al. 2020a)), and pre-training
methods (CorefBERT and CorefRoBERTa (Ye et al. 2020)).
We also include the BERT baseline (Wang et al. 2019a) and
our re-implemented BERT baseline in comparison.
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Model Ign F1 F1

BERT-ATLOPBASE 59.22 61.09
− Adaptive Thresholding 58.32 60.20
− Localized Context Pooling 58.19 60.12
− Adaptive-Thresholding Loss 39.52 41.74

BERT-EBASE 56.51 58.52
− Entity Marker 56.22 58.28
− Group Bilinear 55.51 57.54
− Logsumexp Pooling 55.35 57.40

Table 5: Ablation study of ATLOP on DocRED. We turn
off different components of the model one at a time. These
ablation results show that both adaptive thresholding and
localized context pooling are effective. Logsumexp pooling
and group bilinear both bring noticeable gain to the baseline.

We find that our re-implemented BERT baseline gets sig-
nificantly better results than Wang et al. (2019a), and outper-
forms the state-of-the-art RNN-based model BiLSTM-LSR
by 1.2%. It demonstrates that pre-trained language models
can capture long-distance dependencies among entities with-
out explicitly using graph structures. After integrating other
techniques, our enhanced baseline BERT-EBASE achieves an
F1 score of 58.52%, which is close to the current state-of-the-
art model BERT-LSRBASE. Our BERT-ATLOPBASE model
further improves the performance of BERT-EBASE by 2.6%,
demonstrating the efficacy of the proposed two novel tech-
niques. Using RoBERTa-large as the encoder, our ALTOP
model achieves an F1 score of 63.40%, which is a new state-
of-the-art result on DocRED.

Results on Biomedical Datasets
Experiment results on two biomedical datasets are shown in
Table 4. Verga, Strubell, and McCallum (2018) and Nguyen
and Verspoor (2018) are both sequence-based models that
use self-attention network and CNN as the encoders, respec-
tively. Christopoulou, Miwa, and Ananiadou (2019) and Nan
et al. (2020) use graph-based models that construct document
graphs by heuristics or structured attention, and perform in-
ference with graph neural network. To our best knowledge,
transformer-based pre-trained language models have not been
applied to document-level RE datasets in the biomedical do-
main. In experiments, we replace the encoder with SciBERT,
which is pre-trained on multi-domain corpora of scientific
publications. The SciBERT baseline already outperforms all
existing methods. Our SciBERT-ATLOP model further im-
proves the F1 score by 4.3% and 1.4% on CDR and GDA,
respectively, yielding new state-of-the-art results on these
two datasets.

Ablation Study
To show the efficacy of our proposed techniques, we conduct
two sets of ablation studies on ATLOP and enhanced base-
line, by turning off one component at a time. We observe that
all components contribute to model performance. The adap-
tive thresholding and localized context pooling are equally
important to model performance, leading to a drop of 0.89%

Strategy Dev F1 Test F1

Global Thresholding 60.14 60.62
Per-class Thresholding 61.73 60.35
Adaptive Thresholding 61.27 61.30

Table 6: Result of different thresholding strategies on Do-
cRED. Our adaptive thresholding consistently outperforms
other strategies on the test set.
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Figure 4: Dev F1 score of documents with the different num-
ber of entities on DocRED. Our localized context pooling
achieves better results when the number of entities is larger
than 5. The improvement becomes more significant when the
number of entities increases.

and 0.97% in dev F1 score respectively when removed from
ATLOP. Note that the adaptive thresholding only works when
the model is optimized with the adaptive-thresholding loss.
Applying adaptive thresholding to models trained with binary
cross entropy results in dev F1 of 41.74%.

For our enhanced baseline model BERT-EBASE, both group
bilinear and logsumexp pooling lead to about 1% increase
in dev F1. We find the improvement from entity markers is
minor (0.24% in dev F1) but still use the technique in the
model as it makes the derivation of mention embedding and
mention-level attention easier.

Analysis of Thresholding

Global thresholding does not consider the variations of model
confidence in different classes or instances, and thus yields
suboptimal performance. One interesting question is whether
we can improve global thresholding by tuning different
thresholds for different classes. To answer this question, We
try to tune different thresholds on different classes to max-
imize the dev F1 score on DocRED using the cyclic opti-
mization algorithm (Fan and Lin 2007). Results are shown
in Table 6. We find that using per-class thresholding signifi-
cantly improves the dev F1 score to 61.73%, which is even
higher than the result of adaptive thresholding. However, this
gain does not transfer to the test set. The result of per-class
thresholding is even worse than global thresholding. It indi-
cates that tuning per-class thresholding after training can lead
to severe over-fitting to the development set. While our adap-
tive thresholding technique learns the threshold in training,
which can generalize to the test set.
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John Stanistreet was an Australian politician. He wa
s born in Bendigo to legal manager John Jepson Stan
istreet and Maud McIlroy. (… 4 sentences …) In 195
5 John Stanistreet was elected to the Victorian Legisl
ative Assembly as the Liberal and Country Party mem
ber for Bendigo, but he was defeated in 1958. Stanistr
eet died in Bendigo in 1971. 
 
Subject: John Stanistreet Object: Bendigo 
Relation: place of birth; place of death 

Figure 5: Context weights of an example from DocRED. We
visualize the weight of context tokens a(s,o) in localized con-
text pooling. The model attends to the most relevant context
born and died for entity pair (John Stanistreet, Bendigo).

Analysis of Context Pooling
To show that our localized context pooling (LOP) technique
mitigates the multi-entity issue, we divide the documents
in the development set of DocRED into different groups by
the number of entities, and evaluate models trained with or
without localized context pooling on each group. Experi-
ment results are shown in Figure 4. We observe that for both
models, their performance gets worse when the document
contains more entities. The model w/ LOP consistently out-
performs the model w/o LOP except when the document
contains very few entities (1 to 5), and the improvement gets
larger when the number of entities increases. However, the
number of documents that only contain 1 to 5 entities is very
small (4 in the dev set), and the documents in DocRED con-
tain 19 entities on average. Therefore our localized context
pooling still improves the overall F1 score significantly. This
indicates that the localized context pooling technique can
capture related context for entity pairs and thus alleviates the
multi-entity problem.

We also visualize the context weights of the example in
Figure 1. As shown in Figure 5, our localized context pooling
gives high weights to born and died, which are most relevant
to both entities (John Stanistreet, Bendigo). These two tokens
are also evidence for the two ground truth relationships place
of birth and place of death, respectively. Tokens like elected
and politician get much smaller weights because they are
only related to the subject entity John Stanistreet. The visual-
ization demonstrates that the localized context can locate the
context that is related to both entities.

Related Work
Early research efforts on relation extraction concentrate on
predicting the relationship between two entities within a sen-
tence. Various approaches including sequence-based meth-
ods (Zeng et al. 2014; Wang et al. 2016; Zhang et al. 2017),
graph-based methods (Miwa and Bansal 2016; Zhang, Qi,
and Manning 2018; Guo, Zhang, and Lu 2019; Wu et al.
2019a), transformer-based methods (Alt, Hübner, and Hennig
2019; Shi and Lin 2019), and pre-training methods (Zhang
et al. 2019; Soares et al. 2019) have been shown effective in
tackling this problem.

However, as large amounts of relationships are expressed
by multiple sentences (Verga, Strubell, and McCallum 2018;
Yao et al. 2019), recent work starts to explore document-
level relation extraction. Most approaches on document-level
RE are based on document graphs, which were introduced
by Quirk and Poon (2017). Specifically, they use words as
nodes and inner and inter-sentential dependencies (depen-
dency structures, coreferences, etc.) as edges. This document
graph provides a unified way of extracting the features for
entity pairs. Later work extends the idea by improving neural
architectures (Peng et al. 2017; Verga, Strubell, and McCal-
lum 2018; Song et al. 2018; Jia, Wong, and Poon 2019; Gupta
et al. 2019) or adding more types of edges (Christopoulou,
Miwa, and Ananiadou 2019; Nan et al. 2020). In particu-
lar, Christopoulou, Miwa, and Ananiadou (2019) constructs
nodes of different granularities (sentence, mention, entity),
connects them with heuristically generated edges, and infers
the relations with an edge-oriented model (Christopoulou,
Miwa, and Ananiadou 2018). Nan et al. (2020) treats the doc-
ument graph as a latent variable and induces it by structured
attention (Liu and Lapata 2018). This work also proposes
a refinement mechanism to enable multi-hop information
aggregation from the whole document. Their LSR model
achieved state-of-the-art performance on document-level RE.

There have also been models that directly apply pre-trained
language models without introducing document graphs, since
edges such as dependency structures and coreferences can be
automatically learned by pre-trained language models (Clark
et al. 2019; Tenney, Das, and Pavlick 2019; Vig and Belinkov
2019; Hewitt and Manning 2019). In particular, Wang et al.
(2019a) proposes a pipeline model that first predicts whether
a relationship exists in an entity pair and then predicts the
specific relation types. Tang et al. (2020a) proposes a hierar-
chical model that aggregates entity information from the en-
tity level, sentence level, and document level. Ye et al. (2020)
introduces a copy-based training objective to pre-training,
which enhances the model’s ability in capturing coreferential
information and brings noticeable gain on various NLP tasks
that require coreferential reasoning.

However, none of the models focus on the multi-entity and
multi-label problems, which are among the key differences of
document-level RE to its sentence-level RE counterpart. Our
ATLOP model deals with the two problems by two novel tech-
niques: adaptive thresholding and localized context pooling,
and significantly outperforms existing models.

Conclusion
In this work, we propose the ATLOP model for document-
level relation extraction, which features two novel techniques:
adaptive thresholding and localized context pooling. The
adaptive thresholding technique replaces the global threshold
in multi-label classification with a learnable threshold class
that can decide the best threshold for each entity pair. The lo-
calized context pooling utilizes pre-trained attention heads to
locate relevant context for entity pairs and thus helps in alle-
viating the multi-entity problem. Experiments on three public
document-level relation extraction datasets demonstrate that
our ATLOP model significantly outperforms existing models
and yields the new state-of-the-art results on all datasets.
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