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Abstract

In biodiversity conservation, adaptive management (AM) is
the principal tool for decision making under uncertainty. AM
problems are planning problems that can be modelled using
Mixed Observability MDPs (MOMDPs). MOMDPs tackle
decision problems where state variables are completely or
partially observable. Unfortunately, MOMDP solutions (pol-
icy graphs) are too complex to be interpreted by human
decision-makers. Here, we provide algorithms to solve K-
N -MOMDPs, where K represents the maximum number of
fully observable states and N represents the maximum num-
ber of α-vectors. Our algorithms calculate compact and more
interpretable policy graphs from existing MOMDP models
and solutions. We apply these algorithms to two compu-
tational sustainability applications: optimal release of bio-
control agents to prevent dengue epidemics and conserva-
tion of the threatened bird species Gouldian finch. The meth-
ods dramatically reduce the number of states and α-vectors
in MOMDP problems without significantly reducing their
quality. The resulting policies have small policy graphs (4-
6 nodes) that can be easily interpreted by human decision-
makers.

Introduction
Determining the best management actions is challenging
when critical information is missing. However, urgency and
limited access to data require that decisions must be made
despite this uncertainty. In conservation and natural resource
management, the “best practice” method for managing un-
certain systems is adaptive management (AM) or learning
by doing (Walters and Hilborn 1976; Keith et al. 2011). Ap-
plications of AM include translocation of threatened species
(McDonald-Madden et al. 2011), management of migratory
shorebirds under climate change (Nicol et al. 2015) or re-
sponse to epidemics (Shea et al. 2014). AM requires think-
ing ahead and calculating the consequences of all possible
values of the unknown information before deciding the op-
timal action. AM problems can be modeled and solved as a
planning problem using Mixed Observable MDP (MOMDP)
(Chadès et al. 2012; Nicol et al. 2013) as it is usually as-
sumed that the state of the system (e.g. abundance of a
population) is completely observable but the dynamics of
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a population is unknown under management. We can cast
this unknown information on dynamics as a hidden state
variable. These potential dynamics are often derived from
ecological theory and expert opinions (Williams 2011). In
an MOMDP designed to solve an AM problem, the state
space is expanded to account for the hidden model state vari-
able. Chadès et al. (2012) have shown that existing MOMDP
solvers can benefit by modelling an AM problem as a re-
stricted Mixed Observability problem called a hidden model
MDP (hmMDP). Péron et al. (2017) demonstrated that fur-
ther computational gain could be achieved by initializing
any α-vector MOMDP solver to a lower bound of the value
function.

Being able to understand and explain optimal policies is
a critical step in ensuring uptake of decision models in hu-
man operated systems such as conservation, environmental
management and health. Explainable artificial intelligence
(XAI) is an emerging research area that focuses on both
interpretability and explainability to assist humans in their
decision-making process (Petrik and Luss 2016; Chakraborti
et al. 2019). Building XAI is a challenging and open prob-
lem (Miller 2019). XAI application domains have included
robotics (Miller, Pearce, and Sonenberg 2018), health (Pay-
rovnaziri et al. 2020; Ahmad, Eckert, and Teredesai 2018),
marketing (Rai 2020) and criminal justice (Rudin and Us-
tun 2018; Lakkaraju and Rudin 2017). Some work has ad-
dressed interpretability through data visualization (Walsh
et al. 2020; Chung et al. 2020) to better understand mod-
els and solutions. Other authors emphasize the importance
of building interpretable models instead of explaining black
box models (Rudin 2019). Here, we contribute to the emerg-
ing XAI research by increasing interpretability of MOMDPs
motivated by our computational sustainability domains. One
way to improve interpretability for decision-making is to
simplify models and solutions. To date, algorithms have
simplified the solution of POMDPs to policy graph with at
most N α-vectors (N -POMDPs) (Dujardin, Dietterich, and
Chadès 2015, 2017). More recently, Ferrer-Mestres et al.
(2020) propose to solve K-MDPs providing algorithms to
abstract the state space for MDPs to at most K states.
However, none of these approaches can be directly applied
to MOMDPs because MOMDPs are defined over both the
completely and partially observable state variables.

Our challenge is two-fold: increase the interpretability
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of MOMDP models and increase the interpretability of
MOMDP solutions. Building on previous work, we de-
fine and solve the problem of computing easy-to-interpret
MOMDPs asK-N -MOMDP problems, whereK represents
the maximum number of fully observable states and N rep-
resents the maximum number of α-vectors. We will see that
solving K-N -MOMDPs is not as straightforward as apply-
ing previously proposed approaches.

We first review relevant concepts for MDPs. We de-
fine and solve K-MOMDPs, N -MOMDPs and finally K-
N -MOMDPs. We assess our approaches on two computa-
tional sustainability case studies: a novel application to re-
lease bio-control agents to prevent dengue epidemics and a
previously-published application to conserve the threatened
Australian Gouldian finch (Chadès et al. 2012). We hope that
our approach will increase the uptake of AI solutions for
real-world AM problems and inspire future research.

MDPs, POMDPs and MOMDPs
MDPs and K-MDPs
Markov Decision Processes (MDPs) represent sequential
decision-making problems assuming complete observation
of the system state and knowledge of the stochastic dy-
namics (Puterman 2014). A finite MDP is a tuple M =
〈S,A, T, r, γ〉, where S is a set of states,A is a set of actions,
T is a probabilistic transition function, r is a reward func-
tion and γ is a discount factor. The solution to an MDP is a
function π : S → A, called a policy, that maps states to ac-
tions. We can evaluate policies based on their expected val-
ues given an optimization criterion–hereafter the expected
sum of discounted rewards. V π(s) is the expected value of
executing policy π starting in state s. We denote π∗ an opti-
mal policy and V ∗ the corresponding optimal value function.
Solving an MDP is polynomial in time (Papadimitriou and
Tsitsiklis 1987).
Definition 1. (Ferrer-Mestres et al. 2020) Given an MDP
M , a K-MDP MK = 〈SK , A, TK , rK , γ, φ〉 is an MDP
where SK is a reduced state set of size at most K, A is the
original set of actions, TK is the probability transition func-
tion, rK is the reward function, γ is the discount factor and
φ is a mapping function from the original MDP state space
S to the K-MDP state space SK .
An optimal solution for a K-MDP is a policy π∗K : SK →
A that maximizes the expected sum of discounted rewards.
The problem of finding the best reduced state space (|SK | ≤
K) is a gap minimization problem

gap∗ = min
SK∈P(S), |SK |≤K

max
s∈S

[V π
∗
(s)− V π

∗
K

φ (s)], (1)

between the original optimal MDP policy and the reduced
optimal K-MDP policy where P(S) is the power set of S.
Ferrer-Mestres et al. (2020) solve K-MDPs using state ab-
straction functions and binary search-based algorithms that
give a performance guarantee. We propose a new state ab-
straction function and algorithm to solve K-MOMDPs.

POMDPs and N -POMDPs
Partially Observable MDPs (POMDPs) model sequential
decision-making problems when the state of system is

partially observable (Sigaud and Buffet 2013). A discrete
POMDP is a tuple 〈S,A,O, T, Z, r, b0, γ〉, where S,
A, T , r and γ are defined as in MDPs, O is the set of
observations, Z is the observation function and b0 is an
initial probability distribution over states. Belief states,
i.e., probability distributions over states, serve as sufficient
statistics to summarize the action-observation history
(Åström 1965). Solving a POMDP means finding a policy
π : B → A mapping belief states (b ∈ B) to actions
(a ∈ A). An optimal policy π∗ maximizes the expected
sum of discounted rewards over an infinite time horizon.
For a given belief state b and a given policy π this expected
sum is also referred to as the value function Vπ(b). The
optimal value function V ∗ can be computed using the
dynamic programming operator for a POMDP represented
as a belief MDP (Bellman 1957), i.e., ∀b ∈ B, V ∗(b) =

maxa∈A

[∑
s∈S r(s, a)b(s) + γ

∑
o′ p(o

′|b, a)V ∗(bao
′
)
]
,

where bao
′

is the updated belief given that action a was
performed and o′ is observed.

The infinite time horizon optimal value function can
be approximated arbitrarily closely by a PWLC function
(Sondik 1971). This value function can be written as the up-
per envelope of finitely many |S|-dimensional hyperplanes
as V (b) = maxα∈Γ α · b, where Γ is a finite set of vectors
called α-vectors, one per hyperplane, with each α-vector be-
ing associated with an action, and b is the belief represented
as a finite vector of size |S|. Exact resolution of POMDPs
is intractable (Papadimitriou and Tsitsiklis 1987; Madani,
Hanks, and Condon 2003).
Definition 2. (Dujardin, Dietterich, and Chadès 2017) An
N -POMDP is a POMDP with an additional parameter N
that defines the maximum size of any admissible policy rep-
resented by a set of α-vectors at each time step.
Solving N -POMDPs is a gap minimization problem

g∗ = min
ΓN⊆Γ,|ΓN |≤N

max
b∈B

[V (b)− VΓN (b)], (2)

between the initial value function and the new value func-
tion. Solving N -POMDPs is NP-hard (Dujardin, Diet-
terich, and Chadès 2015, 2017). Several α-min algorithms
have been designed to solve N -POMDPs approximately or
heuristically. Our N -MOMDP algorithms build on α-min2-
fast and α-min2-p (Dujardin, Dietterich, and Chadès 2017),
[two post-processing algorithms] which take as input a pol-
icy Γ provided by a third-party POMDP solver (Kurniawati,
Hsu, and Lee 2008) and select the best combination of N
α-vectors from Γ.

MOMDPs
Mixed Observability MDP (MOMDP) (Ong et al. 2010) are
represented as a tuple 〈X,Y,A,O, Tx, Ty, Z, r, b0, γ〉:
• S = X ×Y is the factored set of states with X represent-

ing the completely observable components and Y repre-
senting the partially observable components.

• A is the finite set of actions;
• O = Ox × Oy is set of observations with Ox = X the

completely observable component, and Oy the set of ob-
servations of the partially observable variables;
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• Tx(x, y, a, x′) and Ty(x, y, a, x′, y′) are the probabilistic
transition functions for X and Y respectively;

• Z is the observation function with p(o′x, o
′
y|a, x′, y′) the

probability of observing o′x, o
′
y after performing action a;

• r(x, y, a) defines the immediate reward received from im-
plementing action a in state (x, y);

• γ is a discount factor and b0 is an initial belief. i.e. a prob-
ability distribution over Y .

A MOMDP policy π : X × BY → A maps a
system state (x, b) to an action. A policy can be as-
sessed through its value function, ∀x, b ∈ X × BY ,
Vπ(x, b) = E[

∑∞
t=0 γ

tR(xt, bt, π(xt, bt))|x, b]. We then
have π∗ = argmaxπ Vπ(x0, b0). The PWLC property ap-
plies to Vπ(x, ·), i.e., there exists a finite set Γx of |Y |-tuples
(α-vectors) to represent V as Vπ(x, b) = maxα∈Γx b · α,
where b · α =

∑
y∈Y b(y)α(y). In conservation, AM prob-

lems can be modelled as a hidden model MDP (hmMDP),
i.e., an MOMDP where the partially observable state vari-
able corresponds to the hidden model (Ong et al. 2010;
Chadès et al. 2012). In this setting, managers can perfectly
observe the state of the studied system but are uncertain
about the dynamics of the system, which will not change
over time. Ty becomes the identity matrix, i.e., p(y′|y) = 1
if y = y′ and 0 otherwise. This formulation assumes that
the real but unknown MDP model yr is one of a finite set
Y of known models. Y is also independent from X , i.e.,
p(y′|x, y, a, x′) = p(y′|y). While we propose to solve K-
N -MOMDPs, our motivation is to make adaptive manage-
ment (hmMDPs) interpretable. Our approach applies to gen-
eral MOMDPs.

Solving K-MOMDPs
Reducing the size of the state space increases the inter-
pretability of both MOMDP models and solutions. Our ap-
proach requires an initial MOMDP model and policy from
which it builds a K-MOMDP.

Definition 3. A K-MOMDP is an MOMDP with an addi-
tional parameter K that constrains the number of fully ob-
servable states x ∈ X to be at most K.

Given an MOMDP M, let us define the K-MOMDP
MK = 〈XK , Y, A,O, TxK , Ty, Z, rK , b0, γ, φ̂〉 where:

• XK = {φ̂(x)|x ∈ X} the abstract fully observable
state space component with |XK | ≤ K and φ̂ a func-
tion that maps elements ofX toXK . The inverse function
φ̂−1(xK) maps elements ofXK to its constituent states in
the original MOMDP; Y defines the partially observable
components;

• A is the same set of actions as in the original MOMDP;

• O = OxK×Oy is the set of observations withOxK = XK

the completely observable component, and Oy the set of
observations of the partially observable variables;

• TxK (xK , y, a, x
′
K) gives the probability that the fully ob-

servable state variable takes the value x′K if action a is
performed in state (xK , y); Ty(xK , y, a, x

′
K , y

′) gives the

probability that the value of the partially observable state
variable changes from y to y′ given that action a is per-
formed in state (xK , y) and xK transitions to x′K ; TxK =∑
x∈φ̂−1(xK)

∑
x′∈φ̂−1(x′K) Tx(x, y, a, x′)ω(x), and Ty =∑

x∈φ̂−1(xK)

∑
x′∈φ̂−1(x′K) Ty(x, y, a, x′, y′)ω(x), where

ω(s) ∈ [0, 1] is a probability distribution over the original
fully observable variables that aggregate to xK :

∀xK ∈ XK ,
( ∑
x∈φ̂−1(xK)

ω(x)
)

= 1;

• Z is the observation function with p(ox′K , oy′ |a, x
′
K , y

′)
being the probability of observing ox′K , oy′ after perform-
ing action a and transitioning to (x′K , y

′); in MOMDPs,
we assume the variable X ′ is perfectly observable, so we
have p(ox′K |a, x

′
K , oy′) = 1 if ox′K = x′K and 0 otherwise;

• rK(xK , y, a): XK × Y × A → [0, Rmax] is the re-
ward function defined as a weighted sum over X , i.e.,
rK(xK , y, a) =

∑
x∈φ̂−1(xK) r(x, y, a)ω(x);

• b0 and γ are defined as for MOMDPs.

The optimal solution for a K-MOMDP is a policy π∗XK :
XK × BY → A that maximizes the expected sum of dis-
counted rewards. The optimal policy can be applied to the
original MOMDP using the function φ̂ and its performance
can be evaluated through:

V
π∗K
φ̂

(xK , b) = E[
∞∑
t=0

γtr(xKt , bt, π
∗
K(φ̂(xKt), bt))|xK , b].

(3)

Solving K-MOMDPs with state space |XK | ≤ K is a gap
minimization problem between the optimal MOMDP policy
π∗ and the optimal K-MOMDP policy π∗K :

g∗K = min
XK∈P(X),
|XK |≤K

max
x∈X

[V π
∗
(x, b)− V π

∗
K

φ̂
(xK , b)], (4)

whereP(X) is the power set ofX . We now propose an algo-
rithm based on a state abstraction function and binary search
to solve K-MOMDPs. Our K-MOMDP algorithm calls a
BUILD-K-MOMDP procedure once X is reduced (Alg. 1).
Given an MOMDPM, an abstract state space S = XK×Y
and φ̂, Alg. 1 computes the weights ω(s), the reward rK and
transition function TxK .

Algorithm 1 BUILD-K-MOMDP

Require: M = 〈X,Y,A,O, Tx, Ty, Z, r,H, b0, γ〉, XK , φ̂
1: ∀x ∈ φ̂−1(xK), ω(x)← computeWeights(φ̂, xK)
2: rK ←

∑
x∈φ̂−1(xK) r(x, y, a)ω(x)

3: TxK ←
∑
x∈φ̂−1(xK)

∑
x′∈φ̂−1(x′K)

TxK (xK , y, a, x
′
K)ω(x)

4: return MK ← 〈XK , Y, A,O, TxK , Ty, Z, rK , H, b0, γ, φ̂〉
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The K-MOMDP Algorithm
We propose a new approximate transitive state abstrac-
tion function defined for MOMDPs, that, given the opti-
mal value function V ∗(x, b), solves the K-MOMDP prob-
lem by sorting states into bins (i.e. groups). Approximate
state abstractions allow greater degrees of aggregation be-
tween states while exact state abstraction functions aggre-
gate states that are exactly equal given a metric (Li, Walsh,
and Littman 2006; Dean and Givan 1997). A transitive func-
tion means that given a predicate p(x, x′) (a binary relation
between fully observable state components), then p(x1, x2)
∧ p(x2, x3) =⇒ p(x1, x3). Transitivity is a desirable
property to write efficient state abstraction algorithms be-
cause we can reduce many calculations (Ferrer-Mestres et al.
2020).

For any pair i, j ∈ X , our approximate transitive
MOMDP state abstraction function φ̂a∗d satisfies:

φ̂a∗d(i) = φ̂a∗d(j)⇔

∀b ∈ B̂Y
(
a∗(i,b) = a∗(j,b) ∧

⌈
V ∗(i, b)

d

⌉
=

⌈
V ∗(j, b)

d

⌉)
,

(5)

for 0 < d ≤ VMAX, where a∗(i,b) and a∗(j,b) are the opti-
mal actions to implement in states (i, b) and (j, b) respec-
tively, and B̂Y is a finite sample set of the continuous belief
space BY . According to Eq. 5, two fully observable state
components i and j can be aggregated if they belong to the
same bin and their optimal actions are the same for all be-
liefs b ∈ B̂Y . This state abstraction function is the MOMDP
formulation of the MDP state abstraction function proposed
by (Abel et al. 2018; Ferrer-Mestres et al. 2020).

Similar to the MDP case, our MOMDP state abstraction
function φ̂a∗d has a value loss that scales in accordance with
d (and Rmax):

max
x∈X

max
b∈BY

V π
∗
(x, b)− V π

∗
K

φ̂a∗
d

(x, b) ≤ 2dRmax
(1− γ)2

. (6)

We propose the K-MOMDP algorithm to find the minimum
value of d that returns an abstract setXK , where |XK | ≤ K,
given a policy Γ, a sampled set of beliefs B̂Y , a precision pa-
rameter pt and the abstraction function φ̂a∗d . Alg. 2 performs
a binary search on d by setting the upper and lower bounds
d+ and d− to VMAX and 0 respectively. For all pairs (x, b),
bindings contains the ceil values of their optimal values and
optimal actions (Line 3). unique returns an abstracted fully
observable state space component XK by grouping those
states that belong to the same bin. Finally, bounds are up-
dated. Alg. 2 has time complexity O(|X||B̂Y | log( VMAX

pt
))

due to the binary search and the unique procedure (linear in
|X||B̂Y |).
Proposition 1. Alg. 2 solves the K-MOMDP problem
within precision pt in a finite number of iterations. The opti-
mal value function derived from the solutionMK has sub-
optimality bounded polynomially in d.

Proof. This follows from the binary search and Eq. 6.

Algorithm 2 K-MOMDP algorithm

Require: M,Γ, B̂Y ,K, φ̂, pt, d
+ = VMAX, d− = 0

1: while p > pt do
2: p← (p+ − p−) ; d← (d− + d+−d−

2
)

3: bindings← [dV
∗(x,b)
d
e, π∗(x, b)](x,b)∈X×B̂Y

4: XK ← unique(bindings)
5: if |XK | ≤ K then d+ ← d
6: else d− ← d
7: return MK ← BUILD-K-MOMDP(M, XK , φ̂)

Solving N -MOMDPs

Definition 4. An N -MOMDP is an MOMDP with an addi-
tional parameter N ≥ |X| that constrains admissible poli-
cies to at most N |Y |-dimensional α-vectors.

Proposition 2. The N-MOMDP problem is NP-hard.

Proof. Any N -MOMDP can be reduced to solving an N -
POMDP. N -POMDPs are NP-hard (Dujardin, Dietterich,
and Chadès 2017). Solving an N -MOMDP requires solving
an N -POMDP. N -MOMDPs are NP-hard.

While it can be tempting to directly apply algorithms for
solving N -POMDPs to solve N -MOMDPs, we have to con-
sider the factored representation of MOMDPs and the ad-
ditional constraint that at least one α-vector is required per
visible state x. Solving an N -MOMDP is a gap minimiza-
tion problem between the original policy Γ and a new policy
ΓN composed of only N α-vectors, where Γ = {Γx}x∈X
and ΓN = {ΓN,x}x∈X with i) for each x, ΓN,x ⊆ Γx and
|ΓN,x| ≥ 1, and ii)

∑
x |ΓN,x| ≤ N . Formally,

g∗N = min
ΓN⊆Γ

|X|≤|ΓN |≤N

max
x∈X
b∈BY

[V (x, b)− VΓN (x, b)], (7)

with V (x, b)=maxα∈Γx α · b where Γx ⊆ Γ and,
VΓN (x, b)=maxα∈ΓN,x α · b where ΓN,x ⊆ ΓN .

We now propose three new algorithms (α̂-min-fast, α̂-
min-p and α̂-min-pruning) to solve N -MOMDPs. These
algorithms accommodate the differences between N -
MOMDPs and N -POMDPs.

The α̂-min-fast N -MOMDP Algorithm

Given a policy Γ, let ŝ be a positive semi-definite function
such that ŝ(α, α̃) = maxb∈B̂Y (α)(α ·b− α̃ ·b), where α, α̃ ∈
Γx and B̂Y (α) is the set of vertices of the polytope subspace
of BY where α dominates the other α-vectors. Solving the
following problem provides an upper bound for Eq. 7:

min
ΓN⊆Γ

|X|≤|ΓN |≤N

max
α∈Γx

min
α̃∈ΓN,x

ŝ(α, α̃). (8)
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To solve Problem 8 we propose a pure integer linear program
with |Γ| 0-1 decision variables and |Γ|+ |X|+1 constraints.

f : min
∑
x∈X

∑
α∈Γx

zxα

s.t.
∑
x∈X

∑
α∈Γx

cα,α′zxα ≥ 1, α′ ∈ Γx∑
x∈X

∑
α∈Γx

zxα ≤ N

∀x ∈ X,
∑
α∈Γx

zxα ≥ 1 (ILPMIN )

(9)

ILPMIN encodes a set of α-vectors of size at mostN where
i) zxα takes value 1 if both α′ ∈ Γx and α ∈ ΓNx hold; ii)
zxα can take value 1 if, for any given α′ ∈ Γx, cα,α′ = 1 , so
α can be added to ΓN ; iii) There are at most N α-vectors in
ΓN and iv) There is at least one α-vector per each fully ob-
servable value x ∈ X . ILPMIN involves more constraints
than the ILP devised to solveN -POMDPs to account for the
factored representation of MOMDPs and the need to have
one α-vector per visible state variable. Alg. 3 performs a
binary search on the decision version of the N -MOMDP
problem, using the function ŝ(α, α̃) and the linear program
ILPMIN . Alg. 3 searches for the smallest ε value that al-
lows a valid N -MOMDP solution. For each Γx ⊆ Γ and for
each pair α, α′ ∈ Γx, if ŝ(α, α′) ≤ ε, then α is a possible
candidate to be included in ΓN (i.e. cα,α′ = 1). Given the
adjacency matrix C of cα,α′ and N , ILPMIN returns a set
of α ∈ ΓN ⇐⇒ zxα = 1.

Algorithm 3 α̂-min-fast N -MOMDP

Require: Γ, B̂Y , pt, |X| ≤ N ≤ 1, ε+ = εub, ε
− = 0

1: while δ ≥ pt do
2: δ ← (ε+ − ε−) ; ε← ε++ε−

2

3: ∀Γx, ∀(α, α′) ∈ Γx, C(α, α′)← 1ŝ(α,α′)≤ε
4: if ΓN ← ILPMIN(C,N) has solution then ε+ ← ε

5: else ε− ← ε
6: return ΓN , ε

Proposition 3. Alg. 3 solves the N -MOMDP problem (8)
within precision pt in a finite number of iterations.

Proof. We are improving on α-min-2-fast by defining ŝ in-
stead of s because α − α̃ is an α-vector, i.e., an hyper-
plane, and will thus have at least one maximum in a corner
of B̂Y (α) (convex polytope). The binary search algorithm
applied to a continuous variable ε using a given precision
parameter pt requires log( εubpt ) iterations and the ILPMIN

can be solved using Branch and Bound for a 0-1 pure integer
linear program. There are |Γ| variables an |Γ|+ |X|+1 con-
straints. Therefore, the complexity of ILPMIN is O(2|Γ|).
Thus, Alg. 3 has time complexity in O(log( εubpt )2|Γ|), due
to the binary search and the Branch&Bound algorithm em-
ployed to solve the 0-1 integer linear program ILPMIN .

The α̂-min-p N -MOMDP Algorithm
Using Alg. 3, the real gap between V and VΓN is approx-
imated by an upper bound (ε). To increase performance of
our solution, a logical first step is to adapt the α-min-2-p al-
gorithm (Dujardin, Dietterich, and Chadès 2017) designed
to solve N -POMDPs with a better approximation of the op-
timal gap (eq. 10). However, this also requires careful con-
sideration of the factored properties of N -MOMDPs. Let us
represent the value function V by both Γ and a finite set ∆
of β-points, where ∆ = {∆x}x∈X and a β-point is of the
form 〈b, V (x, b)〉, where b ∈ B∆, with B∆ being a finite
subset of BY , and V (x, b) = maxα∈Γx α · b being the op-
timal value at (x, b). Let us define ŝ′ to be a function such
that ŝ′(α̃, β) = ŝ′(α̃, 〈b, V (x, b)〉) = α̃ · b− V (x, b), where
α̃ ∈ Γx. We decrease the optimal gap (eq. 7) by adding β-
points to ∆ as necessary:

g∗N (∆) = min
ΓN⊆Γ

|X|≤|ΓN |≤N

max
β∈∆

min
α̃∈ΓN

ŝ′(α̃, β), (10)

where 1 ≤ N . The main challenge is to build ∆ such that
the real gap between V and VΓN is minimized. Alg. 4 itera-
tively adds β-points to ∆ corresponding to the biggest gap
between the original value function V and the reduced value
function VΓN until the current gap gr(V, VΓN ) and the opti-
mal gap g∗N (∆) are close enough given a precision parame-
ter pt. Alg. 4 initializes ∆ ← {∆x}x∈X , with the β-points
corresponding to the corners of the belief simplexes B̂Y :
b̂1=(1, . . . , 0), . . . , b̂|Y |=(0, . . . , 1), so that, ∀x∈X , ∆x =
{β1 = 〈b̂1, V (x, b̂1)〉, . . . , β|Y | = 〈b̂|Y |, V (x, b̂|Y |)〉}, where
∆x ⊆ ∆. The algorithm runs until a precision criterion is
reached. Line 2 performs α-min-β, which is the α̂-min-fast
algorithm with three differences: i) pairs α, α′ ∈ Γx are
now pairs (α, β) where α ∈ Γx and β ∈ ∆x, ii) ŝ′(α̃, β)
replaces ŝ(α, α̃), and iii) ∆ is required. Notice that the re-
turned value g∆ is ε in α̂-min-fast N -MOMDP. Alg. 4 com-
putes, for all x ∈ X , the beliefs b∗x that maximize the gap
between V (x, b) and VΓN (x, b) (line 3). Finally, b∗x is added
to ∆x as a β-point (line 6).

Algorithm 4 α̂-min-p N -MOMDP algorithm

Require: Γ, B̂Y , pt, N,∆, δ =∞, gub =∞
1: while δ ≥ pt

2
do

2: (ΓN , g∆)← α-min-β(Γ,∆, pt
2
, N )

3: ∀x∈X , b∗x ← argmaxb∈B̂Y (V (x, b)− VΓN (x, b))

4: gub ← min(gub,maxx∈X(V (x, b∗x)− VΓN (x, b∗x)))
5: δ ← gub − g∆
6: ∀∆x , ∆x ← ∆x ∪ {β = 〈b∗x, V (x, b∗x)〉}
7: return ΓN , gub

Proposition 4. Alg. 4 solves the N -MOMDP Problem (8)
within precision pt in a finite number of iterations.

Proof. We adapt the proof from (Dujardin, Dietterich, and
Chadès 2017). Alg. 4 provides a better approximation of the
optimal gap g∗N by solving g∗N (∆), so g∗N (∆) ≤ g∗N be-
cause ∆ ⊆ {(b, V (x, b)), b ∈ B̂Y } and beliefs in ∆ are a
subset of B̂Y . Procedure α-min-β(Γ,∆, pt2 , N) provides an
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optimal solution to problem (8) with g∆ ≤ g∗N (∆) + pt
2 ,

and, by definition, this leads to g∆ ≤ g∗N + pt
2 . Optimal gap

is g∗N ≤ gr(V, VΓN ) and in line 4 gub is set to the real gap
maxx∈X V (x, b∗)− VΓN (x, b∗), then, g∗N ≤ gub. At last it-
eration, δ ≤ pt

2 and δ = gub − g∆, so gub − g∆ ≤ pt
2 .

Then, gub ≤ g∆ + pt
2 ≤ (g∗N + pt

2 ) + pt
2 . Finally we have

g∗N ≤ gub ≤ g∗N + pt. At each iteration, Alg. 4 provides
a reduced policy ΓN . If ΓN is the same as a previously-
generated ΓN , then δ ← 0. So, in the worst case, ΓN will
be equal at each iteration to every possible combination ofN
α-vectors before δ < pt

2 . Then, the number of iterations in
Alg. 4 is bounded by |Γ|N .α-min-β has same time complex-
ity as Alg. 3 as detailed in the proof of Proposition 3, being
the time complexity O(log( εubpt )2|Γ|). Overall, the complex-
ity of Alg. 4 is O(|Γ|N log( εubpt )2|Γ|).

The α̂-pruning N -MOMDP Algorithm
Algs. 3 and 4 require solving a pure integer linear pro-
gram. We relax this requirement and propose a new algo-
rithm (Alg. 5) to iteratively prune α-vectors that are equiv-
alent given a metric. Any pair of α-vectors α, α′ ∈ Γx are
equivalent if the following predicate is satisfied:

φ̂αd(α) = φ̂αd(α′) =⇒
⌈
α

d

⌉
=

⌈
α′

d

⌉
, (11)

for 0 < d ≤ VMAX, where VMAX represents the maxi-
mum optimal value. This transitive predicate offers a new
unique minimal policy ΓN for which all α-vector pairs
that satisfy the predicate belong to the same group. A set
of α-vectors belong to the same group if they belong to
the same bin as defined by Eq. 11. Alg. 5 performs a bi-
nary search on d and it computes the bin indexes of all α-
vectors given d, (line 3) and store them in bindings. Func-
tion unique returns the α-vectors that belong to the same
bin υ in the same set Γx (line 4). There is a set Υx of bins
υ per each Γx. Each bin υ in Υx contains one or more α-
vectors. Let’s call this set the alphas of υ: alphas(υ). The
α-vectors in ΓN are selected from each bin υ (line 5) such
that α̃ ← argminαυ∈alphas(υ) maxb∈B̂Y (V (x, b) − αυ · b),
where α̃ ∈ alphas(υ), α̃, αυ ∈ Γx and υ ∈ Υx. Remain-
ing α-vectors are removed from ΓN . Finally, bounds are up-
dated and the algorithm continues until a precision criterion
is reached.

Algorithm 5 α̂-pruning N -MOMDP algorithm

Require: Γ, B̂Y , pt, N, d
+ = VMAX, d− = 0

1: while p ≥ pt do
2: p← (d+ − d−) ; d← (d− + d+−d−

2
)

3: ∀Γx, ∀α ∈ Γx, bindings(x, α)← dα/de
4: ∀x∈X ,Υx ← Υx ∪ υ = unique(bindings(x, ·))
5: ∀Υx , ∀v∈Υx , ΓN ←

ΓN ∪ argminαυ∈alphas(υ) maxb∈B̂Y (V (x, b)− αυ · b)
6: if |ΓN | ≤ N then d+ ← d
7: else d− ← d
8: return ΓN

Proposition 5. Alg. 5 solves the N -MOMDP problem
within precision pt in a finite number of iterations.

Proof. This proposition is a direct consequence of the bi-
nary search algorithm, Eqs. (7) and (11). Alg. 5 has time
complexity O(|Γ| log( VMAX

pt
)) due to the binary search and

the unique procedure, which is linear in |Γ|.

Solving K-N -MOMDPs
Definition 5. A K-N -MOMDP is an MOMDP with two
additional parameters, K and N , that constrain admissi-
ble policies to be defined (i) over at most K abstract visible
states and (ii) with at most N α-vectors.

Proposition 6. The K-N -MOMDP problem is NP-hard.

Proof. Solving a K-N -MOMDP requires solving an N -
MOMDP. An N -MOMDP can be reduced to solving an
N -POMDP. N -POMDPs are NP-hard. K-N -MOMDPs are
NP-hard.

Solving a K-N -MOMDP is a gap minimization problem
between the original policy and a new policy composed of
only K visible states and N α-vectors:

g∗K−N = min
ΓN⊆Γ,|ΓN |≤N

XK∈P(X),|XK |≤K

max
x∈X
b∈BY

[V (x, b)− VXK ,ΓN (x, b)].

(12)

Minimizing over both the ΓN ⊆ Γ and XK ∈ X at the
same time is challenging. Our approach aims to first mini-
mize over the set of visible states XK ∈ X and then over
the set of α vectors, ΓN ⊆ Γ, solving Problems 4 and 7.

Algorithm to Solve K-N -MOMDPs
Our proposed algorithm builds a K-MOMDP given an
MOMDPM (line 1). Then we use an MOMDP solver (e.g.
SARSOP (Kurniawati, Hsu, and Lee 2008)) to produce a
good quality policy (line 2). Finally the policy is reduced
to N α-vectors by using any of our proposed N -MOMDP
algorithms (line 3) and returns a K-MOMDPMK and a re-
duced policy ΓN .

Algorithm 6 K-N -MOMDP algorithm

Require: M,Γ, B̂Y ,K,N, pKt , pNt
1: MK ← solve-K-MOMDP(M,Γ, B̂Y ,K, φ̂, pKt)
2: Γ← MOMDP-solver(MK)
3: ΓN ← solve-N -MOMDP(Γ, B̂Y , pNt , N)
4: return MK,ΓN

Proposition 7. Alg. 6 solves the K-N -MOMDP problem in
a finite number of iterations.

Proof. This follows from proofs for algorithms α̂-min-fast,
α̂-min-p and α̂-pruning N -MOMDP (Algs. 3, 4, 5) and the
proof for K-MOMDP algorithm (Alg. 2).
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Experimental Results
To assess the effectiveness and practicality of our algo-
rithms, we evaluated them on two adaptive management
problems that arise in conservation and biosecurity. We ran
our experiments on an i7-8650U, 1.90 GHz, with 16 GB and
Ubuntu 18.04. Experiments were conducted using the MDP-
Toolbox (Chadès et al. 2014), MATLAB (R2020a), MAT-
LAB Optimization Toolbox and MO-SARSOP solver (Kur-
niawati, Hsu, and Lee 2008), a version of SARSOP algo-
rithm adapted for MOMDPs, which computes a policy Γ
composed of |Y |-dimensional α-vectors, with each α-vector
associated with an action. For simplicity, in the state abstrac-
tions, we assumed that, for any given abstract fully observ-
able state component xK , if the number of original fully ob-
servable state components aggregated to xK is |φ−1(xK)|,
then the weight of each x ∈ φ−1(xK) is uniformly dis-
tributed: ω(x) = 1/|φ−1(xK)|. We set up a precision target
pt of 0.01 for all our algorithms and no time limit.

Computational Sustainability Case Studies
Management of a threatened bird The objective of our
first case study is to maximize the persistence probability of
the Gouldian finch (Chadès et al. 2012). The population state
is fully observable but we are uncertain about the response to
the management actions. The problem was originally mod-
eled as as a factored state space representation where |X|=2
represents the probability of persistence (Low or High) and
|Y |=4 represents expert-elicited models (Expert1, Expert2,
Expert3, Expert4) that predict the state dynamics when the
management actions are applied. The set of actions A that
managers can choose are: do nothing (DN), improve fire and
grazing management (FG), control feral cats (C), and pro-
vide nesting boxes (N). We define the set of observations O
as the set of probability of persistence of the Gouldian finch
population. The observation function Z is the probability of
observing o given a state pair s = (x, by) and equals 1 if
o′x = x and 0 otherwise. Finally we define the reward func-
tion r(x, a) so that r(Low,DN) = 0, r(High,DN) = 20,
r(Low, FG) = r(Low,C) = r(Low,N) = −5, and
r(High, FG) = r(High,C) = r(High,N) = 15. As
initial belief b0, we assume that each expert is as likely to
be correct at the beginning of our adaptive management pro-
gram. First, we solve the problem using MO-SARSOP (|Γ|=
11644 α-vectors, Table 1). Our N -MOMDP algorithms for
N=6 performed well with VΓN (·, b0) ≥ 0.98V (·, b0) for all
algorithms. This is a reduction of 99.95% in the number of
α-vectors while retaining 98% of the policy value. Fig. 2A
shows the resulting policy graph (6 nodes representing α-
vectors and a branching factor of at most |X| = 2). We learn
that under a low probability of persistence and no prior infor-
mation, managers should invest in improving fire and graz-
ing management. If the response is positive (x = High), the
policy recommends continuing unless observation ’Low’ oc-
curs. In that case, providing nesting boxes is recommended.
Similarly, controlling feral cats is recommended if imple-
menting management of fire and grazing in state ’Low’ re-
mains in a ’Low’ state. If controlling feral cats does not
improve the status of the species, the recommended action

is to go back to fire and grazing management. The origi-
nal policy could not be efficiently represented as a policy
graph given the number of nodes (|Γ| >11000 α-vectors).
Chadès et al. (2012) describe similar recommendations to
ours. Theirs were derived through explorations of simula-
tions for given scenarios but a complete understanding was
missing given the impossibility of representing the origi-
nal policy graph. We also ran our N -MOMDP algorithms
on a version of the Gouldian finch problem with |X|=81,
representing the population state of four different species
(Gouldian finch, long-tailed finch, dingo and cats), |Y |=2
representing the dynamics of the system given by two dif-
ferent experts (Expert1, Expert2), and the same four man-
agement actions. For a value of N=|X|=81, we obtained
VΓN (·, b0) ≥ 0.98V (·, b0). A policy of |ΓN |=81 α-vectors
represents a reduction of 97.9% of the original policy size.
The computing times are less than 2 seconds for all algo-
rithms (precision of 0.01).

Release of biocontrol agents In our second case study,
we seek to optimally release biocontrol agents to control
epidemics of dengue fever. Dengue viruses can be transmit-
ted between humans by Aedes albopictus mosquitoes. The
number of dengue infections per year is estimated to be 390
million (Bhatt et al. 2013). Genetically modified biologi-
cal control agents (SIT) can be used to control the popu-
lation of mosquitoes under some conditions. Deciding how
much biocontrol agent to release is difficult due to the un-
certainty surrounding key predictive population parameters
such as the density parameter (Alphey, Alphey, and Bon-
sall 2011). We modeled this problem as a hmMDP with a
factored state space, S = 〈X,Y 〉, with X representing the
discretized abundance of female mosquitoes ranging from
0 to 108 (|X| = 100), and Y = {0.302; 0.84; 0.94; 1.04}
(|Y |=4) the set of discretized density dependent parameters
that lead to very different responses to the release of bio-
control agents. We define the finite set of actions that man-
agers can choose as a set A = {0, 5, 10, 20}*106 (|A| = 4),
that correspond to the amount of biocontrol agent to be re-
leased each day. We define the set of observations O as the
set of abundance states of female mosquitoes X . The obser-
vation function Z is the probability of observing o given a
state pair s = (x, by) and equals 1 if o′x = x and 0 oth-
erwise. We define the reward function r(x, a) as the cost
of being in abundance state x and implementing action a.
We define the cost of implementing an action a as the pro-
duction cost of the quantity of biocontrol agents to release
over the management period ($813/106 insects, (Alphey,
Alphey, and Bonsall 2011)). We define the cost of being in
state x as the expected cost of a dengue epidemics occur-
ring for a given abundance of female mosquitoes. As initial
belief b0, we assume that each discretized density parame-
ter is as likely to be correct at the beginning of our adaptive
management program. We evaluate our K-MOMDP algo-
rithm for all values of K from K = 2 to K = 100. Fig. 1
shows the evolution of the lower bound V0(b0). For values
of K < 8, the lower bounds decrease, which indicates poor
performance. However, for values of K ≥ 8, the resulting
K-MOMDP has a value of VXK (·, b0) ≥ 0.93V (·, b0). We
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then evaluate our N -MOMDP algorithms with |Γ| = 789 α-
vectors. For N = |X| = 100, we obtain a good performance
with VΓN (·, b0) ≥ 0.98V (·, b0) for all our N -MOMDP al-
gorithms. Finally, we run our K-N -MOMDP algorithm for
K=8 and N=8. The resulting policy performs well, with
VXK ,ΓN (·, b0) ≥ 0.91V (·, b0). Fig. 2B represents its pol-
icy graph. Study of the policy graph reveals that some states
were not reachable from our initial state (x0, b0) and the pol-
icy graph can be represented with only 4 α-vectors. Com-
pletely observable abstract state variables xKi ∈ XK repre-
sent the aggregated fully observable state variables xj ∈ X
from the original MOMDP problem. Each aggregated xKi
defines a more compact representation of the populations of
female mosquitoes. The computing times for K=8 and N=8
are less than 4.5 seconds for all algorithms (precision target
is 0.01).

Figure 1: Lower bound values for the bio-control agents
problem.

Problem
(|X|, |Y |, |A|) Algorithm N VΓN Time(sec.)

Gouldian4Exp
(2,4,4)

sarsop 11644 85.6 NA
α̂-min-fast 6 84.58 6.03
α̂-min-p 6 85.04 45.83
α̂-pruning 6 84.32 8.23

Gouldian2Exp
(81,2,4)

sarsop 3861 75.74 NA
α̂-min-fast 81 74.23 0.88
α̂-min-p 81 75.33 0.97
α̂-pruning 81 74.5 1.37

Bio-control agents
(100,4,4)

sarsop 789 -0.59 NA
α̂-min-fast 100 -0.61 0.65
α̂-min-p 100 -0.61 0.92
α̂-pruning 100 -0.63 0.56

Table 1: Comparison of α̂-min N -MOMDP algorithms.
Bold values represent the best VΓN .

Conclusion
Our experiments show that our algorithms achieve dramatic
reduction in the number of states and α-vectors in MOMDPs
while producing policies that achieve similar value and are
highly interpretable. Motivated by the need to provide more

Figure 2: Policy graph for (A) the Gouldian finch with 4
experts and N = 6, (B) bio-control agents K-N -MOMDP
problem with 4 α-vectors. Nodes represent α-vectors and
edges are observations. Sterile Insect Technology (SIT) rep-
resents the amount of bio-control agents to be released.

interpretable models and policies for human operated sys-
tems, we proposed a new problem: solvingK-N -MOMDPs.
Our approach finds the best possible policy of size K visi-
ble states and N α-vectors. First, for solving K-MOMDPs,
we developed an algorithm that make use of previously pro-
posed state abstraction algorithms for MDPs and we adapted
them for MOMDPs. Second, for solving N -MOMDPs, we
developed two algorithms based on the α-min principle, and
a new algorithm that performs a pruning on the set of α-
vectors Γ. The three N -MOMDP algorithms perform a bi-
nary search on a parameter that minimizes the gap between
the original and the reduced policy givenN . Finally, we pro-
vided an algorithm to solve K-N -MOMDPs. We assessed
our algorithms on two adaptive management problems. The
resulting K-N -policy graphs provided precious insights for
managers that will hopefully results in higher uptake of AI
approaches. The main drawback of our approach is that it
will only work for relatively small problems of low dimen-
sion. Future work will investigate how to deal with more
dimensions and assessing interpretability of proposed K-
N -MOMDP solutions with domain experts and behavioral
scientists.
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