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Abstract 
Hiring is a high-stakes decision-making process that balances 
the joint objectives of being fair and accurately selecting the 
top candidates. The industry standard method employs sub-
ject-matter experts to manually generate hiring algorithms; 
however, this method is resource intensive and finds sub-op-
timal solutions. Despite the recognized need for algorithmic 
hiring solutions to address these limitations, no reported 
method currently supports optimizing predictive objectives 
while complying to legal fairness standards. We present the 
novel application of Evolutionary Many-Objective Optimiza-
tion (EMOO) methods to create the first fair, interpretable, 
and legally compliant algorithmic hiring approach. Using a 
proposed novel application of Dirichlet-based genetic opera-
tors for improved search, we compare state-of-the-art EMOO 
models (NSGA-III, SPEA2-SDE, bi-goal evolution) to expert 
solutions, verifying our results across three real world da-
tasets across diverse organizational positions. Experimental 
results demonstrate the proposed EMOO models outperform 
human experts, consistently generate fairer hiring algorithms, 
and can provide additional lift when removing constraints re-
quired for human analysis. 

 Introduction   
Hiring is a high-stakes practice that influences people’s live-
lihoods across the globe. It is an important and challenging 
socio-technical problem relevant to industrial, academic, 
and governmental organizations (Raghavan, Barocas, 
Kleinberg, and Levy 2020; Shute et al. 2016). The hiring 
process encompasses the joint objectives of providing a fair, 
legally compliant process and selecting candidates that are 
best fit for the position. Governments vary in their require-
ments for fairness in hiring; however, many conceptualize 
fairness as the absence of at least two types of discrimina-
tion: disparate treatment and adverse impact (e.g., USA, EU, 
ILO). Disparate treatment represents differential treatment 
of protected groups, such as the use of quotas, while adverse 
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impact represents decisions that have a disproportionate im-
pact on minority groups, such as unequal hiring rates.  

The industry standard method, rational weighting, in-
volves subject-matter experts balancing predictive accuracy 
and fairness objectives by manually generating algorithms 
using heuristics and data (SIOP 2018). Rational weighting 
addresses fairness requirements, but it is resource-intensive, 
finds sub-optimal solutions, encodes human biases, and can-
not guarantee the legal requirement that a fairer and equally 
predictive hiring algorithm does not exist. These limitations 
have led to the growing interest in methods that learn hiring 
algorithms solely from the data—algorithmic hiring. Algo-
rithmic hiring carries transformative potential for reducing 
bias while enhancing reproducibility, predictive accuracy, 
and scalability for larger feature sets (Raub 2018; Houser 
2019). Despite the significant promise of algorithmic hiring, 
and the claims of many organizations, no reported method 
currently supports optimizing predictive objectives while 
adhering to legal fairness standards. This has led to the con-
tinued reliance on rational weighting (Raghavan et al. 2020; 
Sánchez-Monedero, Dencik, and Edwards 2020).  

Many existing solutions eschew fairness requirements to 
solely focus on predictive accuracy, leading to algorithms 
that are not legal for practical implementation (Hemamou et 
al. 2019; Meijer et al. 2020). Alternatively, methods have 
been proposed to reduce relationships between predictors 
and minority classes; however, these methods do not ac-
count for adverse impact (Calmon et al. 2017; He, 
Burghardt, and Lerman 2020). Multi-objective optimization 
(MOO) models have demonstrated promising results when 
simplifying protected groups into a binary minority variable, 
yet performance was not compared to competitive baselines, 
such as rational weighting (De Cortes, Sackett, and Lieven 
2011; Song, Wee, and Newman 2017). MOO models pro-
duce an approximate pareto front—set of non-dominated so-
lutions—which can incorporate client preferences and 
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support human-in-the-loop decision-making. Nonetheless, 
real hiring problems require fairness objectives for multiple 
demographic classes, rapidly increasing the number of ob-
jectives, which can degrade MOO performance (Deb and 
Jain 2013). Evolutionary many-objective optimization 
(EMOO) models address MOO’s objective size limitation 
through modifying dominance relationships, using reference 
directions for exploration, and reducing the objective space 
(Li et al. 2015; Ishibuchi, Tsukamoto, and Nojima 2008).  

In this paper, we present the first fair and legally compli-
ant algorithmic hiring method using a diverse set of state-
of-the-art EMOO models (i.e., NSGA-III, SPEA2-SDE, bi-
goal evolution). Additionally, we propose the use of Di-
richlet-based genetic operators for constrained EMOO prob-
lems as opposed to traditional repair approaches. We evalu-
ate models on three real world datasets along diverse posi-
tions at Fortune 500 companies, comparing to the industry 
standard rational weighting baseline created by professional 
Industrial/Organizational (I/O) Psychologists. Empirical re-
sults demonstrate that EMOO substantially outperforms hu-
man experts across all datasets. Additionally, when con-
straints required for human experts are removed, EMOO can 
further improve performance.  

Related Work 

Hiring 
Hiring algorithms transform candidate data gathered from 
selection systems (e.g., situational judgement, work history) 
into a ranked composite score with the joint goals of select-
ing high performing candidates and maximizing fairness 
across protected attributes (e.g., gender, race; Pyburn, Ploy-
hart, and Karvitz 2008). The legal requirements for fair em-
ployment decisions vary by country; nevertheless, there is 
broad consensus that algorithms must meet at least two re-
quirements: they cannot include protected attributes (dispar-
ate treatment) and they cannot disproportionally exclude mi-
nority groups (adverse impact). Additional properties may 
be required by region, such as the job relevance of features 
(i.e., face validity) and the absence of differential prediction 
and measurement bias (US EEOC Uniform Guidelines; 
EEOC UG). Government organizations and AI experts have 
also stressed the need for interpretability in algorithms ap-
plied to high-stakes decision-making, which includes hiring 
(Rudin 2019; EU GDPR; Schumann et al. 2020; Goodman 
and Flaxman 2016).  

The de facto method for industry applications is rational 
weighting, where subject matter experts manually select a 
weighted linear combination, which sums to one, using spot 
checking, heuristics, and the available literature to predict 
performance while ensuring fairness (Ployhart and Holtz 
2008; SIOP 2018). Rational weighting is interpretable, easy 

to perform, and can guarantee that most fairness require-
ments are met; however, it is also time consuming, expen-
sive, hard to replicate, and inefficient at optimization. An-
other simple method is to equally weight all standardized 
predictors, known as unit weighting (Einhorn and Hogarth 
1975); however, this approach is inefficient for predictive 
accuracy and cannot guarantee fairness. Authors have also 
proposed linear regression (O’Neill and Steel 2018; Meijer 
et al. 2020) to improve predictive validity, but it similarly 
fails to account for adverse impact.  

Fair Machine Learning 
Fair machine learning is a critical issue for the ethical de-
ployment of AI/ML and encompasses a diverse set of defi-
nitions and approaches depending upon the target domain 
(Friedler et al. 2019). Algorithmic approaches hold trans-
formative potential for fair and predictive hiring (Houser 
2019; Raub 2018; Schumann et al. 2020); although, their 
success is contingent upon the adoption of fair ML methods 
to meet social, ethical, and legal fairness requirements. 

Preprocessing methods attempt to prevent models from 
learning subtle patterns of discrimination by striping predic-
tors of their relationship to a protected class (Feldman et al. 
2015; Calmon et al. 2017; He, Burghardt, and Lerman 
2020). A key limitation of preprocessing methods for hiring 
is that they typically focus exclusively on feature sets and 
do not control for adverse impact. An alternative strategy is 
post-processing of predictors, but these methods often re-
quire direct use of protected classes, which would constitute 
disparate treatment (Zehlike et al. 2017; Hardt, Price, and 
Srebro 2016; Dwork et al. 2018). Regularization methods 
incorporate fairness objectives directly into their loss func-
tion using hyperparameters to weight each objective’s rela-
tive importance (Fould et al. 2019; Zemel et al. 2013). They 
provide efficient optimization at the cost of sensitivity to 
fairness/utility trade-offs from the selected objective 
weights and poor performance for concave pareto fronts 
(Boyd and Bandenberghe 2004). Regularization methods 
can be interpreted as an aggregation approach to multi-ob-
jective optimization (MOO; Li et al. 2015). Some research 
has been conducted demonstrating the potential of other 
simple evolutionary methods for hiring systems with prom-
ising results (De Cortes, Sackett, and Lieven 2011; Song, 
Wee, and Newman 2017; De Corte, Sackett, and Lievens 
2010). These studies suffered from two primary limitations: 
(1) they did not include competitive baselines and (2) they 
simplified protected classes into a binary variable (majority, 
minority) rather than considering all represented minority 
groups. 

Many-Objective Optimization 
Including fairness objectives for all minority groups rapidly 
increases the number of objectives under consideration. The 
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balancing of many (>4) objectives becomes increasingly 
complex for several reasons: (1) the pareto space becomes 
increasingly large and difficult to represent, (2) non-domi-
nated sorting degrades as most solutions belong to the pareto 
frontier, (3) genetic operators  become inefficient at search-
ing the wider pareto space, (4) evaluating diversity and per-
formance metrics becomes computationally expensive (Deb 
and Jain, 2013; Ishibuchi et al. 2014; Ishibuchi, Tsukamoto, 
and Nojima 2008; Wagner, Beume, and Naujoks 2007). 
Evolutionary many-objective optimization (EMOO) algo-
rithms attempt to circumvent these issues through modify-
ing the definition of dominance, the objectives being opti-
mized, and the search mechanisms to improve the explora-
tion process and create smaller tiers of domination.  

Methods such as geometric modifications of dominance 
relations and the use of rank methods can improve selection 
pressure toward the pareto front at the cost of solution diver-
sity (Ishibuchi, Tsukamoto, and Nojima 2008; Kukkonen 
and Lampinen 2007). Aggregation and reduction ap-
proaches condense the problem space down to a small num-
ber of objectives (Wang et al. 2018; Saxena, et al. 2013), 
and therefore a multi-objective space, but at the cost of so-
lution diversity (Li, Yang, Liu 2015; Yuan et al. 2016). In-
dicator based methods directly optimize on metrics repre-
senting the quality of a pareto-front, often using hypervol-
ume as it is strictly monotonic to Pareto dominance (Bader 
and Zitzler 2011; Sun, Yen and Yi 2019). Indicator-based 
methods have demonstrated strong performance; however, 
they are computationally intensive, particularly as the num-
ber of objectives increases. Finally, some approaches alter 
the diversity maintenance function using reference direc-
tions, an explicit set of weight vectors, to select dominance 
between similar solutions and widen the search process 
(Deb and Jain 2013; Zhang and Li 2007). 

Evolutionary Many-Objective Algorithmic 
Hiring 

In this section, we formally introduce the problem of hiring 
from a pool of candidates with the joint goals of selecting 
future top performers and adhering to legal fairness require-
ments. Then, we outline the application of evolutionary 
many-objective optimization to the hiring problem. Finally, 
we introduce Dirichlet-based genetic operators to flexibly 
account for our interpretability constraints. 

Problem Overview 
Consider a hiring system composed of 𝑁 applicants and 𝑃 
available positions. The hiring system is composed of 𝐿 sets 
of 𝑄𝑙  interrelated questions 𝑋𝑞,𝑙 . Each set represents a dif-
ferent activity relevant to the job, such as situational judge-
ment or mathematical ability. Questions within each activity 
are aggregated to create activity composite scores �̅�𝑙. Hiring 

algorithms serve to combine activity scores into a singular 
composite θi for ranking and selecting 𝑃 candidates. 

Interpretability is critical in effective and fair algorithmic 
decision-making (Bigu and Cernea 2019), leading us to in-
corporate the following model constraints. First, we limit 
hiring algorithms to weighted linear combinations of fea-
tures. Second, we constrain feature weights to sum to one, 
mimicking traditional grade scoring, as the primary goal is 
ranking candidates. Finally, we enforce a rounding incre-
ment 𝜓 for predictor weights at 0.05 or 0.01 to provide clear 
communication to lay audiences, such as organizational 
stakeholders and applicants themselves. More formally:  

 
0 ≤ 𝑤𝑙 ≤ 1 ∶ ψ |𝑤𝑙 , l ∈ 𝐿  

ψ ∈ {0.01,0.05} 
∑ 𝑤𝑙

𝐿
𝑙=1 = 1  

∑ 𝑤𝑙�̅�𝑖,𝑙 =  𝜃𝑖
𝐿
𝑙=1   

Objectives 
Many-objective algorithmic hiring methods generate a set of 
𝐴 approximately pareto-optimal hiring algorithms that 
jointly optimize 𝐽 job performance and 𝐹 fairness objectives. 
 

𝐴 = {𝑊𝑥 ∈ Ω𝐽+𝐹: ∄Wy ∈ Ω𝐽+𝐹 , 𝑊𝑦 ≺ 𝑊𝑥} 
 

Without loss of generality, we describe a minimization 
problem where 𝑊𝑥 ≺ 𝑊𝑦 if the following two conditions 
hold: 

 𝐿𝑚(𝑊𝑥) ≤ 𝐿𝑚(𝑊𝑦): ∀𝑚 ∈ {1, … , 𝐽 + 𝐹}   

 𝐿𝑚(𝑊𝑥) < 𝐿𝑚(𝑊𝑦): ∃𝑚 ∈ {1, … , 𝐽 + 𝐹} 

Job Performance 
Training a model to rank applicants for predictive job per-
formance requires data that is unavailable in the applicant 
pool. Hiring algorithms are often trained using job incum-
bents for the initial validation (i.e., concurrent validity; 
EEOC Uniform Guidelines). The standard loss function for 
criterion validity is Pearson’s correlation; however, correla-
tion is ill-suited for top-k ordinal data (Li, Wang, and Xiao 
2019). As we do not have a ground truth for who should be 
selected, top-ranking distances cannot be applied (Xia, Liu, 
and Li 2009). Instead, we propose using the sum of the true 
scores for the predicted top candidates as a distance metric. 
We then normalized the predicted ordinal sum by subtract-
ing the ordinal sum of the known top-k candidates, which 
represents the maximum individual fairness in relation to the 
true criterion score. This metric was loosely based on the 
earthmovers distance outlined in Feldman et al (2015). 
Adverse Impact 
A commonly used heuristic for assessing adverse impact is 
the four-fifths rule, where all minorities must be selected at 
least four-fifths as often as the majority. A drawback of 
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using selection ratios as a fairness objective is their instabil-
ity when there is extreme class imbalance. We addressed 
this by using the smoothed empirical differential fairness 
objective (Foulds et al. 2019; 2020). A secondary benefit of 
sEDF is its ability to incorporate intersectionality consider-
ations; nevertheless, intersectional group evaluation is be-
yond the scope of this work. 

Evolutionary Framework 
EMOO methods offer three primary benefits for algorithmic 
hiring: (1) they generate an approximate pareto front, allow-
ing for human-in-the-loop decision-making, (2) they can 
handle many-objectives, and (3) they can optimize on non-
differentiable loss functions (e.g., selection). While encom-
passing many diverse approaches, most EMOO methods uti-
lize four genetic operators for the creation of solutions: sam-
pling, crossover, mutation, and repair (Algorithm 1).   
Sampling 
The sampling operator initializes the first generation of al-
gorithms. A commonly used approach for problems with 
linear fixed sum constraints is to perform random uniform 
sampling or Latin hypercube sampling (LHS) and then to 
repair the generated solutions (Chiam, Tan, and Mamum 
2008). These approaches result in non-uniform sampling on 
the constrained space and can degrade convergence. We 
propose sampling from a Dirichlet distribution using a uni-
form prior as an alternative. Figure 1 displays the sampling 
density (N=10000) on a three-dimensional fixed linear sum 
problem for two of the dimensions across the three ap-
proaches, demonstrating the improved uniformity of the 
proposed Dirichlet method. 

 
Algorithm 1 Evolutionary Optimization 
  1: Input: data X, N_EMOO, m 
  2: P ← initialize(X, N_EMOO) 
  3. while termination criterion not met do 
  4.   𝑃1

∗, 𝑃2
∗ ← matingSelection(P)  

  5.   𝑃𝑂 ← crossover(𝑃1
∗, 𝑃2

∗) 
  6.   𝑃𝑂 ← mutation(𝑃𝑂) 
  7.   𝑃𝑂 ← repair(𝑃𝑂) 
  8.   P   ← environmentalSelection(𝑃 ∪ 𝑃𝑂) 
  9: Return: P  

 

 

Figure 1: Density of sampling operators. 

 

Figure 2: Density of crossover operators. Red points are parents. 
 

Crossover 
Crossover functions serve to create new algorithms (chil-
dren) through the combination of two existing algorithms 
(parents). Offspring should remain near parents in many-ob-
jective problems due to the large search space (Sat, Aguirre, 
and Tanaka 2011). Due to our summation constraint, tradi-
tional crossover methods do not apply directly because they 
require repair that alters the algorithms in an undesirable 
way. Figure 2 demonstrates the complications with repaired 
SBX and random uniform crossover, where children tend 
toward the center of the distribution. We propose the use of 
a constrained crossover operator based on a Dirichlet distri-
bution centered around a single parent (“asexual”). Figure 2 
demonstrates that asexual crossover generates offspring that 
are more similar to their parents than traditional methods. 
Mutations 
Mutation operators serve to create children through creating 
a random alteration in an existing parent algorithm. Due to 
the summation constraints, our proposed mutation operator 
was based on a Dirichlet distribution centered around the 
parent algorithm and applies to the entire algorithm, rather 
than effecting a single weight. 
Repair 
Algorithms that failed to meet our rounding and summation 
constraints underwent one of two repair operations. First, 
the summation repair activated when ∑ 𝒘𝒊

𝑲
𝒊 ≠ 𝟏 and di-

vided each weight by their sum. Next, the rounding repair 
operation rounded weights to the nearest 𝝍 if ∃𝒘𝒊: 𝝍 ∤ 𝒘𝒊. 
When the rounding repair operation caused ∑ 𝒘𝒊

𝑲
𝒊 ≠ 𝟏, we 

randomly distributed (∑ 𝒘𝒊
𝑲
𝒊 − 𝟏)/𝝍 increments of 𝝍 

across the available weights, similar to the round-lot con-
straints used in financial problems (Chiam, Tan, and Ma-
mum 2008). 

Datasets 
Evaluation of selection systems requires data on a candi-
date’s protected class (e.g., race, gender), responses to the 
hiring assessment, and job-related performance criteria. As 
performance data cannot be acquired from applicants, selec-
tion systems are typically trained on data collected from cur-
rent employees (SIOP 2018). We collected manager and su-
pervisor ratings on a 1–5 Likert scale along multiple 
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attributes of performance criteria (e.g., overall performance, 
technical skills). Raters provided estimates of their rating 
confidence and knowledge of the subordinate on 7-point 
Likert scales, with values less than 5 removed from analysis. 
We evaluated adverse impact for self-reported race (i.e., 
Black and Latinx) and binary gender (i.e., female), as they 
had sufficient representation in our datasets (N > 30). Cer-
tain activities, such as personality, are multifaceted con-
structs composed of multiple correlated subcomponents 
(e.g., optimism, self-efficacy, competitiveness). Due to the 
limited capacity of rational weighting, multifaceted con-
structs are often aggregated into a single score to reduce di-
mensionality.  

We conducted experiments on three datasets across di-
verse positions at different Fortune 500 companies. Datasets 
were limited in size due to the cost of collecting criterion 
data and the size of incumbent populations; however, these 
sample sizes are common in industry applications and can 
be sufficient for generalizable results (Song, Wee, and New-
man 2017). This is in part due to the simplicity of con-
strained, linear, hiring algorithms and the regularizing im-
pact of multiple objectives (Sener and Koltun 2018). 

Leadership Dataset 
Data were collected for an entry level management position 
at an international service organization. The performance 
criteria were supervisor ratings on employees being a best 
performer over time, whether the employee is a currently a 
top performer, and the likelihood that the manger would re-
hire the employee, resulting in a final set of six objectives (3 
criteria, 3 diversity). The total sample size was 377 after re-
moving 18 observations with insufficient rater confidence. 
The feature set was composed of five activity scores across 
multiple questions for situational judgement, priority set-
ting, problem solving, personality, and work history. 

Sales Dataset 
Data were collected for commercial sales positions at a large 
international retail sales organization. The performance cri-
teria were manager ratings on employees being a current top 
performer, their likelihood of promotion, and the likelihood 
the manager would rehire the employee, resulting in a final 
set of six objectives (3 criteria, 3 diversity). The total sample 
size was 922 after removing 345 observations with insuffi-
cient rater confidence. The feature set was composed of five 
activity scores across multiple questions for situational 
judgement, data input verification, mathematical ability, 
personality, and work history 

Banker Dataset 
Data were collected for a financial banking position at a 
large U.S. financial institution. The performance criteria 
were supervisor ratings on individuals being a best 

employee over time, being a current top performer, having 
promotion potential, being a team player, and having the 
ability to ramp up, resulting in a set of 8 objectives (5 crite-
ria, 3 diversity). The total sample size was 416 after remov-
ing 137 observations due to insufficient rater confidence. 
The feature set was composed of six activity scores across 
multiple questions for situational judgement, mathematical 
ability, problem solving, culture fit, personality, and work 
history. 

Experiments 

Models 
We included two baseline methods commonly used in in-
dustry settings. 
• Unit weighting: This is a standard method used as a 

baseline for comparisons (De Corte, Lievens, and 
Sackett 2007).  

• Rational weighting (RW): I/O Psychologists gener-
ated a pool of algorithms based on the full dataset (no 
cross-validation), from which they select a top k sub-
set. The experts created these algorithms, unaware of 
the current study, as part of the normal validation pro-
cedure for live hiring systems. 

We investigated several well-established evolutionary mod-
els and one proposed model that modifies an existing aggre-
gation method.  
• NSGA-II (Deb et al. 2002): This model is a classic 

baseline for multi-objective optimization. It uses non-
dominated sorting and crowding distance for environ-
mental selection.  

• MOEA/D (Zhang and Li 2007): This model employs 
reference direction decomposition and applies pres-
sure along a neighborhood for each subproblem using 
Euclidean distances.  

• SPEA2-SDE (Li, Yang, Liu 2014): This is a modified 
form of SPEA-2 designed for many-objective optimi-
zation. It uses shift-based density estimation and the 
number of dominated solutions for environmental se-
lection. 

• NSGA-III (Deb and Jain 2013): This method modifies 
the NSGA-II framework with the addition of refer-
ence directions, which effectively replaces crowding-
distance, to improve the search process for many-ob-
jective problems.   

• BiGE (Li, Yang, Liu 2015): Bi-goal evolution uses an 
aggregation approach to many-objective problems by 
converting all objectives into a bi-goal problem re-
garding proximity and diversity. 

• TriGE: We propose a simple modification of BiGE to 
create three-objectives: criterion performance, fair-
ness, and solutions diversity. This modification al-
lows for a direct tradeoff between fairness and utility.  

14799



Experimental Settings 
We trained and evaluated models using 10-repetitions of a 
70-30 train-test split (Bischl et al. 2012). For each repetition, 
EMOO models trained on standardized training data and 
generated an approximate pareto set of hiring algorithms 
from the final generation’s non-dominated solutions. Hiring 
algorithms that failed to meet the four-fifths ratio for any 
protected class were pruned and the remaining algorithms 
were evaluated on the test set. Data splits varied across rep-
etitions but were held constant between models to calculate 
performance indicators. Models were constructed in python 
using the pymoo module (Blank and Deb 2020) and run on 
32gb of RAM and a 2.90GHz processor. Repetitions took 
between 0–5 hours depending on the model and dataset. 

Evolutionary hyperparameters were selected based on the 
original papers and were not tuned due to the limited sample 
size of the datasets. Reference direction for NSGA-III and 
MOEA/D were generated using Riesz s-Energy (Blank et al. 
in press), with NSGA-III using a multi-layer morphology 
(Deb and Jain 2013). The number of reference directions 
was a function of the number of objectives in each of the 
datasets. Training terminated either after 30 generations of 
no improvement or when 800 generations finished. The mu-
tation rate was 0.75, which was substantially higher than the 
standard 1/K because our mutation operator acts on the en-
tire chromosome rather than each independent weight. The 
crossover rate was 1. The crossover and mutation Dirichlet 
intensity parameters were 0.25. All models used differential 
fairness and ordinal sum for the loss functions.  

Results 
We selected a diverse set of unary performance indicators to 
evaluate the approximate pareto sets from each model along 
their objective diversity, proximity, and cardinality (Cheng, 
Shi, and Qin 2015). Objective diversity was assessed along 
the spread (S) of the objective space (average range of ob-
jectives in pareto front). Proximity was assessed with in-
verted generational distance plus (IGD+; Ishibuchi et al. 
2015) in reference to the concatenation of all model’s non-
dominated fronts for each repetition, forming an approxi-
mate true pareto front. Cardinality was calculated as the 

number of non-discriminatory non-dominated solutions 
generated by an algorithm (C). The number of non-domi-
nated solutions (NNDS) is the number of solutions generated 
by an algorithm that were present in the approximated true 
pareto front. Hypervolume (HV), measuring both diversity 
and proximity, was calculated using an approximation with 
an epsilon and delta of .01 (Bringmann and Friedrich 2010). 
The hypervolume reference point was 1.5 for differential 
fairness and 1 for normalized ordinal sum. 

In Experiment 1, we compared models under the con-
straints required by the rational weighting baseline (ψ =
 0.05, L ≈ 5). The population and offspring size were set to 
300. EMOO models outperformed baseline methods across 
all datasets (Table 1). SPEA2-SDE and NSGA-II consist-
ently demonstrated the best overall fit, yielding proximal 
and diverse approximate pareto fronts that substantially out-
performed rational weighting. BiGE, TriGE, and NSGA-III 
generated null sets for some repetitions on the Leadership 
dataset, resulting in a lower cardinality. A subset of the best 
performing SPEA2-SDE algorithms, equal to the number of 
rational algorithms (k), were selected to mimic the process 
of selecting hiring algorithms. Algorithms were selected by 
taking the top-k average across the ranking for each objec-
tive. These top-k SPEA2-SDE and rational weighting hiring 
algorithms were compared along their average criterion (C) 
and fairness (F) performance (Figure 3), with SPEA2-SDE 
providing significant gains on fairness objectives.  

In Experiment 2, we evaluated EMO models under re-
laxed constraints that are infeasible for rational weighting 
methods using the Sales dataset (𝛙 =  𝟎. 𝟎𝟏, 𝐋 = 𝟏𝟔). Per-
sonality and Situational Judgement were decomposed into 
their respective subscales. Population and offspring size 
were raised to 600 to support the increased size of the feature 
space. The partially constrained EMOO results demon-
strated improved fit over the human constrained results, 
with NSGA-II yielding the strongest performance (Table 2). 
The relaxed constraints degraded performance on the Lead-
ership and Banker datasets, where the personality subscales 
were generally forced to the minimum weight (𝛙 =  𝟎. 𝟎𝟏). 
The increased volume of low utility subscales, even when 
suppressed, consumed a large proportion of overall weight. 
Detailed results are omitted due to space constraints.   

 
 Sales Leadership Banker 
Model HV IGD+ S C NNDS HV IGD+ S C NNDS HV IGD+ S C NNDS 
Unit weights 5.37 0.164 0.00 1.0 0.2 5.54 0.382 0.00 1.0 0.4 1.68 0.19 0.00 1.0 0.2 
RW 6.93 0.049 0.09 20.0 10.6 7.27 0.131 0.13 5.0 1.7 2.12 0.16 0.09 5.0 1.5 
NSGA-II 7.68 0.003 0.22 152.5 28.6 8.69 0.006 0.33 65.7 16.1 3.27 0.04 0.32 141.4 32.1 
MOEA/D 7.36 0.019 0.19 62.8 12.6 8.07 0.044 0.29 32.2 6.4 3.05 0.04 0.26 79.9 20.4 
SPEA2-SDE 7.68 0.003 0.22 153.1 28.7 8.69 0.006 0.33 65.8 16.1 3.37 0.01 0.33 249.7 65.9 
NSGA-III 7.14 0.033 0.17 33.8 5.9 8.05 0.037 0.28 18.2 5.3 2.86 0.08 0.19 17.8 4.6 
BiGE 6.04 0.095 0.05 2.3 0.7 6.67 0.146 0.12 3.3 0.8 2.06 0.23 0.09 4.4 0.6 
TriGE 6.69 0.055 0.13 13.5 2.4 7.72 0.050 0.25 13.4 3.0 2.77 0.09 0.22 19.3 4.2 

Table 1: Rational Weighting Constrained Performance Indicators
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Figure 3: Average Pareto Front for Top-k Algorithms 
 

Model HV IGD+ Spread C NNDS 
Unit Weights 5.95 0.167 0 1 0.4 
NSGA-II 8.47 0.006 0.28 396.7 39.7 
MOEA/D 7.41 0.044 0.14 41.7 5.6 
SPEA2-SDE 8.31 0.047 0.27 370.3 18.4 
NSGA-III 7.80 0.029 0.19 85.8 6.9 
BiGE 6.93 0.087 0.13 5.4 0.7 
TriGE 7.45 0.068 0.19 24.2 3.6 

Figure 4: Partially Constrained Performance Indicators on Sales 
Dataset 

Discussion 
In this study, we present the first algorithmic hiring frame-
work that adheres to legal fairness standards. The proposed 
EMOO framework generates an approximate pareto front of 
interpretable, predictive, and legally compliant hiring algo-
rithms. Evaluation results across three diverse, real-world 
datasets demonstrated that EMOO models substantially out-
performed competitive baselines at fairly selecting high-per-
forming candidates.  

When operating within the constraints of rational 
weighting, SPEA2-SDE and NSGA-II yielded the best per-
formance among EMOO models across all performance in-
dicators. NSGA-II and SPEA2-SDE demonstrated nearly 
identical performance in the constrained condition for two 
of the datasets. A potential explanation is that both algo-
rithms rely on similar domination-based proximity mecha-
nisms, resulting in identical non-dominated solutions. 
Therefore, their primary distinction lies in their selection of 
dominated solutions based on their diversity preservation 
mechanisms. The rational weighting constraints used in Ex-
periment I severely limit the size of the feature space, poten-
tially causing the differences in diversity mechanisms to be-
come negligible. One explanation for the surprisingly strong 
performance of NSGA-II compared to some of the many-
objective optimization models could be that there was a rel-
atively small number of correlated objectives (6–8). This 
prevented one of NSGA-II’s primary drawbacks, which is 
the degradation of non-dominated sorting that occurs when 
the entire population belongs to the non-dominated front. 
The proposed TriGE model outperformed the original 
BiGE; however, it did not produce competitive results. 

In Experiment 2, we relaxed the rational weighting con-
straints on the number of features and the weight increments 
using the Sales dataset. Similar to Experiment 1, NSGA-II 
was the best performing models, and all EMOO models ex-
cept for BiGE outcompeted both baselines. Additionally, re-
laxing these constraints resulted in overall better perfor-
mance compared to Experiment 1.  

This study substantiates the claims that algorithmic hiring 
can transform employment decision-making to be a more 
fair, valid, and interpretable process (Houser et al. 2019). 
The hiring algorithms generated from the EMOO frame-
work are glass-box models that are well-suited for high-
stakes decision making (Rudin 2019). NSGA-II was able to 
identify hiring algorithms with equal or better prediction 
while improving fairness for female, Black, and Latinx ap-
plicants compared to rational weighting (Figure 3). The ad-
vent of algorithmic hiring opens the possibility of tackling 
critical challenges in the employment selection industry, 
such as intersectionality, which have remained out of grasp 
for traditional methods. 

There were some limitations with this study. Firstly, not 
all demographic classes were sufficiently represented in the 
data for conducting fairness analysis, which limited the 
number of objectives in the current study. Secondly, the cur-
rent study trained models using concurrent validation data; 
however, the distribution of job incumbents may differ from 
the applicant pool, which could potentially create issues 
from covariate shift and distributional differences.   

Conclusion and Future Work 
Hiring is an area of research and practice that can greatly 
benefit from meaningful applications of AI. Nonetheless, 
there currently exists no published solution for models that 
can operate within the legal framework of hiring. The con-
tribution of this study is in the unique application of EMOO 
models that adhere to legal constraints and produce human 
interpretable hiring algorithms. Results demonstrated across 
three industry data sets show that EMOO models outper-
formed industry baselines. Most promisingly, results indi-
cate that EMOO models could have substantial impact on 
hiring fairness, creating more equitable outcomes for candi-
dates across protected classes. 

Future work on this subject should continue to investigate 
important fairness topics, such as intersectionality. In real-
ity, candidates often belong to multiple protected groups, 
such as Black and female; however, the intersection of an 
individual’s multi-group membership is often not assessed 
in typical fairness analysis. EMOO algorithms that can as-
sess and balance intersectional fairness effectively would be 
even more impactful and beneficial to society and organiza-
tions. Similarly, future research should investigate predic-
tive parity, or equality of prediction across protected groups.  
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Ethics Statement 
The present study was explicitly focused on the utility of AI 
for increasing predictive accuracy and human well-being 
(fairness) in a major area of society, the workplace. Results 
from this study indicate evolutionary algorithmic hiring can 
substantially improve fairness outcomes while maintaining 
or enhancing selection of top ranked candidates. Congruent 
with both AAAI and SIOP ethics statements, we strove to 
avoid harm to minority groups, provide trustworthy results, 
and to honor the privacy of our candidates and clients. Im-
portantly, our focus was on creating models that increase 
fairness across all protected groups, which discourages the 
models from harming one group to benefit another. Further-
more, our presented models were designed for human inter-
pretability, which enhances accountability and transparency 
as well as aids in communication to society. Candidate in-
formation for the three hiring systems was collected in a se-
cure and ethical manner consistent with the Society for Hu-
man Resource Management (SHRM).  
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