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Abstract

The prediction of the intensity, location and time of the land-
fall of a tropical cyclone well advance in time and with high
accuracy can reduce human and material loss immensely. In
this article, we develop a Long Short-Term memory based
Recurrent Neural network model to predict intensity (in terms
of maximum sustained surface wind speed), location (latitude
and longitude), and time (in hours after the observation pe-
riod) of the landfall of a tropical cyclone which originates in
the North Indian ocean. The model takes as input the best
track data of cyclone consisting of its location, pressure, sea
surface temperature, and intensity for certain hours (from 12
to 36 hours) anytime during the course of the cyclone as a
time series and then provide predictions with high accuracy.
For example, using 24 hours data of a cyclone anytime during
its course, the model provides state-of-the-art results by pre-
dicting landfall intensity, time, latitude, and longitude with a
mean absolute error of 4.24 knots, 4.5 hours, 0.24 degree, and
0.37 degree respectively, which resulted in a distance error of
51.7 kilometers from the landfall location. We further check
the efficacy of the model on three recent devastating cyclones
Bulbul, Fani, and Gaja, and achieved better results than the
test dataset.

Introduction

Tropical cyclones (TC) are one of the most devastating nat-
ural phenomenon that originates on tropical and subtrop-
ical waters and a commonly occurring natural disaster in
coastal area. TC is characterised by warm core, and a low
pressure system with a large vortex in the atmosphere. TC
brings strong winds, heavy precipitation and high tides in
coastal areas and resulted in huge economic and human loss.
Over the years, many destructive TCs have originated in the
North Indian Ocean (NIO), consisting of the Bay of Bengal
and the Arabian Sea. In 2008, Nargis, one of the disastrous
TC in recent times, originated in the Bay of Bengal and re-
sulted in 13,800 casualties alone in Myanmar and caused
US$15.4 billion economic loss (Fritz et al. 2009). In 2018,
Fani cyclone caused 89 causalities in India and Bangladesh,
and US$9.1 billion economic loss (Kumar, Lal, and Kumar
2020). Indian Meteorological department (IMD) defines the
intensity of a TC in terms of “Grade”, which is derived from
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Grade | Low pressure system MSWS
(knots)

0 Low Pressure Area (LP) <17

1 Depression (D) 17-27

2 Deep Depression (DD) 28-33

3 Cyclonic Storm (CS) 34-47

4 Severe Cyclonic Storm (SCS) 48-63

5 Very Severe CS (VSCS) 64-89

6 Extremely Severe CS (ESCS) 90-119

7 Super Cyclonic Storm (SS) >120

Table 1: The Grade classification of the low pressure systems
by IMD.

the ranges of the Maximum Sustained Surface Wind Speed
(MSWS)' as shown in Table 1. The prediction of cyclone’s
trajectory and intensity is crucial to save both material loss
and human lives. Track and intensity prediction of a cyclone,
well advance in time is not an easy task because of the com-
plex and non-linear relationship between its cause factors
which also include external factor like terrain.

The most widely used cyclone track and intensity pre-
diction techniques can be classified into statistical, dynam-
ical, and ensemble models2. However these methods have
their own limitations in terms of huge computation power
required and the requirement of long duration data (Wang
et al. 2009; Hall and Jewson 2007; Krishnamurti et al. 1999).
In recent years, with the increase in computational power
and availability of huge data, new models using Artificial
Neural Networks (ANNs) have been increasingly used to
forecast track and intensity of cyclones (Leroux et al. 2018;
Alemany et al. 2018; Giffard-Roisin et al. 2020; Moradi Ko-
rdmahalleh, Gorji Sefidmazgi, and Homaifar 2016).

The most important prediction about a TC is its arrival at
land, known as landfall of a cyclone. The accurate prediction
about the location and time of the landfall, and intensity of
the cyclone at the landfall will hugely help authorities to take
preventive measures and reduce material and human loss. In
this work, we attempt to predict intensity, location, and time

'FAQ on Tropical Cyclones - http://www.rsmcnewdelhi.imd.
gov.in/images/pdf/cyclone-awareness/terminology/faq.pdf

>Track and Intensity models - https://www.nhc.noaa.gov/
modelsummary.shtml



of the landfall of a TC at any instance of time during the
course of a TC by observing the cyclone for as few num-
ber of hours (h) as possible. We have build a model using
Long Short-Term Memory (LSTM) based Recurrent Neu-
ral Network (RNN) which can provide predictions about the
landfall of a cyclone originating in the NIO. The developed
model uses 12h, 18h, 24h or 36h data of a TC, anytime dur-
ing the course of a TC and predicts the intensity, location,
and time of the landfall. In subsequent sections, we will de-
scribe the related work, methodology, and data used in this
study. Finally, we will compare our results with the one re-
ported by IMD.

Related Work

In (Chaudhuri et al. 2015, 2017), authors presented an ANN
to predict the intensity and track of a TC in NIO using cy-
clones data from 2002 to 2010. In (Mohapatra, Bandyopad-
hyay, and Nayak 2013), authors have presented the current
state-of-the-art track prediction accuracy in terms of dis-
tance error between predicted location and actual location of
a'TC, achieved by IMD for cyclones originated in NIO. In all
these works, the predictions have been provided for a certain
number of lead hours say 6h, 12h, or 24h and do not specifi-
cally focus on predicting the intensity, location, and time of
the landfall of a TC. Moreover, these works do not use the
complete data available on the IMD website and restrict to
certain number of years to obtain their dataset. In compari-
son, we study the prediction problem at the landfall which
is more challenging as a TC may behave abruptly close to
the landfall. Also, we do a more comprehensive study by in-
cluding all available data on the IMD website. We compare
our results directly with the predictions achieved by IMD for
the landfall of a TC in recent years. In recent works (Giffard-
Roisin et al. 2020,?; Maskey et al. 2020; Pradhan et al. 2018)
TC’s track and intensity prediction problem is targeted using
reanalysis and satellite data.

Model

We tried various machine learning models like ANN, RNN
(based on GRU, LSTM and BiLSTM) and 1D-CNN for
the above stated prediction problems. RNN model based on
LSTM gives the best result. In this section, we will briefly
describe the LSTM based RNN model.

Artificial Neural Networks (ANNs)

ANNSs (McCulloch and Pitts 1943) are motivated from the
human brain and consist of basic units called neurons which
are connected to each other through various connections.
At a neuron, incoming information is processed and passed
on to connected neurons. Neurons are partitioned in various
layers and generally a neuron in a given layer is connected to
all neurons in the preceding and succeeding layers. The in-
formation flow between neurons is a composition of a non-
linear function with a weighted linear sum of the incoming
input. Generally, the non-linear function in composition is
fixed at each neuron and called an activation function. The
weights assigned to the connecting edges are updated in a
way to minimize the suitably chosen loss function, which
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Figure 1: Structure of RNN.

is done through the Gradient Descent algorithm (Kiefer and
Wolfowitz 1952) by back-propagating the gradients and up-
dating the weights on the way. The intermediate layers be-
tween input layer and output layer containing the neurons
are called hidden layers. ANN model has successfully able
to capture non-linear complex relationship between input
and output, but it is not the best choice for time-series data
as the model is not designed to learn from sequential data.
In what follows we will discuss RNN has the ability of in-
formation persistence.

Recurrent Neural Networks (RNNs)

RNN (Jordan 1990; Cleeremans, Servan-Schreiber, and Mc-
Clelland 1989; Pearlmutter 1989) are like an ANN with in-
ternal connections that enables the network to learn not just
from current input but also from the previous inputs which
makes it suitable for the time series data. An internal state
is kept and updated over time that stores the learning from
the previous inputs and used along with current input to de-
termine current output. A simple RNN structure is described
in Figure 1. Theoretically, RNN can remember information
through long time series data but in practice they are good in
remembering information from only few steps back. RNN
are prone to vanishing gradient or exploding gradient prob-
lem where the gradient decreases or increases exponentially.
This problem can be avoided by using LSTM cells in RNN.

Long Short-Term Memory (LSTM) Networks

LSTM network (Hochreiter and Schmidhuber 1997; Gers,
Schmidhuber, and Cummins 1999; Gers, Schraudolph, and
Schmidhuber 2003; Gers and Schmidhuber 2001) overcome
the shortcomings of RNN by using three inner cell gates and
maintaining a memory cell to handle long term dependen-
cies. LSTM cell can selectively read, selectively write and
selectively forget. A general LSTM cell is mainly consists
of four gates- an input gate to process newly coming data, a
memory cell input gate to process the output of the previous
LSTM cell, a forget gate to decide what to be forget and de-
cides the optimal time lag to remember previous states, and
an output gate to process all the newly calculated informa-
tion and generate output.

Stacked LSTM Networks

Stacked LSTM or Deep LSTM (Graves, Mohamed, and Hin-
ton 2013) networks consist of multiple hidden layers where



a layer is stacked on top of the previous layer. Each layer
consists of multiple LSTM cells. A LSTM layer provides
a sequence output in place of a single output to the below
LSTM layer. This structure helps in better learning in se-
quence and time series data.

Bi-Directional LSTM Networks

As the name suggests, a Bi-directional LSTM (BiLSTM)
(Schuster and Paliwal 1997) learns in both directions- for-
ward and backward. It has two separate LSTM layers, in
opposite directions of each other that helps in future to past
and past to future learning. One layer takes the input in the
forward direction and other in the backward direction and
both layers are connected to the output layer.

Data

Various regional centers across the world keep track of trop-
ical cyclones and this dataset is generally known as Best
Track Data (BTD). The Regional Specialised Meteorolog-
ical Centre (RSMC) of IMD in New Delhi is responsible for
cyclones monitoring over NIO. The yearly data from 1982
to 2020 (till June) is available on 3. The center classified a
cyclonic disturbance as a tropical cyclone, when the associ-
ated MSWS is 34 knots or more (Mohapatra, Bandyopad-
hyay, and Nayak 2013). We use this BTD as dataset for our
model.

BTD contain many features associated with a cyclone but
we only use latitude, longitude, MSWS, and estimated cen-
tral pressure (ECP) as features in our model. Two more de-
rived features distance and direction # of change between
two successive recordings of a cyclone is calculated. These
two features play an important role in capturing speed and
direction of change of a cyclone which can be crucial for
the landfall prediction. Another important factor that affects
the course of a tropical cyclone is Sea Surface Temperature
(SST), which is obtained from NOAA dataset provided at®.
The above stated features are readily available during the
progress of a cyclone, unlike the reanalysis data or satellite
images, which required co-ordination among various agen-
cies.

The dataset contains few manual errors which have been
corrected carefully after which a total of 6474 recordings,
recorded at an interval of 3 hours, of 353 cyclones have
been extracted. If the difference between two available time
points for a cyclone is more than 3 hours then we have
filled up missing time points to make the data a continu-
ous time series data recorded at an interval of 3 hours. If
a time series data, d(t) is available for ¢t = ¢y and t3,
but missing for ¢ = t3,%s,...,t3¢,—1) then we evaluate
D (d(tsn) — d(to))/n and fill the missing data with
d(tsr) = d(to) + kD for 1 < k < n — 1. After completing
this process and deleting any possible error in dataset we get
a total number of 9088 recordings of 352 cyclones. As we

3http://www.rsmenewdelhi.imd.gov.in/index.php?option=
com_content&view=article&id=48&Itemid=194&lang=en

*https://www.movable-type.co.uk/scripts/latlong.html

Shttp://apdrc.soest.hawaii.edu/erddap/griddap/hawaii_soest._
afc8_9785_.907e.html
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Figure 2: Cyclones trajectory till Landfall.

are interested in predicting the landfall and therefore, for ev-
ery cyclone, we retain recordings only till the landfall time.
This further reduces our dataset to 3988 recordings of 206
cyclones (rest of the cyclones do not hit the coast and die
out in sea). For cyclones with at least 24 hours or 8 record-
ings, the average time to landfall is around 80 hours. The
trajectory of all cyclones till the Landfall is shown in Fig-
ure 2. We do not use data of three recent devastating TCs
Bulbul, Fani, and Gaja in training the model and keep them
for testing our model. The trajectories of these three TCs are
highlighted in Figure 2.

Generation of Training Dataset

For a fixed cyclone, let 77, be the number of data points
recorded after which the landfall occurs. If we want our
model to provide predictions after taking 7" number of data
points as input, we need to make sure that our model trains
on inputs of size 7. To achieve that for each cyclone, we
create T, — T' + 1 inputs. A single input is a sequence of T'
vectors of the form

(MSWS(t), ECP(t), SST(t), distance(t), direction(t),
latitude(t), longitude(t))

where k <t <T+k—1.Ask variesfrom1toT;, —T +1,
we get all such inputs for a given cyclone. The target vari-
ables for each input are MSWS (in knots) at landfall, lat-
itude and longitude at landfall, and time (in hours (h)) re-
maining to landfall of the cyclone to which the input corre-
sponds to. For example, recording of data for cyclone Am-
phan started 00 hours on 16 May, 2020 and the landfall
occurred at 12 hours on 20 May, 2020. Therefore, record-
ings of 108 hours are available for Amphan cyclone which
amounts to 77, = 108/3 = 36. Suppose, we want to cre-
ate a model for T" = 4, then Amphan cyclone will provide
36 — 4 + 1 = 33 data points for training the model. For a
given T, the training dataset is collection of all such inputs
across all the cyclones. Notice that each input is a time series
data of length T'.
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Figure 3: RNN based on LSTM and BiLSTM for T =4.

Training and Proposed Model Implementation

We have used two different RNN models based on LSTM,
Model-1 for landfall’s intensity and time prediction and
Model-2 for landfall’s location (latitude and longitude) pre-
diction. Model-1 has 3 stacked LSTM layers and one dense
output layer. Model-2 has 3 stacked BiLSTM layers and
one dense output layer. For a faster and better training of
our models, we have scaled the features of data using Stan-
dard Scaler of Scikit learn library (Pedregosa et al. 2011).
The scaling is given by the function, f(x) = (z — u)/o,
where p is the mean and o is the standard deviation. Model-
1 scales the input variables using the Standard Scaler ex-
cept the target variables, intensity and time. The Model-2
scales all input variables including target variables, latitude
and longitude for training. We have implemented these mod-
els in Keras API (Chollet 2015) which runs on top of low
level language TensorFlow (Abadi et al. 2015), developed
by Google. Both models use the default learning rate 0.01
and Adaptive moment estimation (Adam) (Kingma and Ba
2014) optimizer to minimize the loss. The model train the
network using MSE loss function and the accuracy is mea-
sured in terms of MAE and RMSE. The definition of these
error measures are as follows:
MSE = % > (yi —%)? RMSE = VMSE,

i=1

1 n
MAE n ; |yz y1| )
where y; is the actual value and y; is the predicted value. We
have tried various standard activation functions and selected
Swish(Bz) = z.Sigmoid(Sz) (Ramachandran, Zoph, and
Le 2017) with § = 2 for Model-1 and ReLU(z) =
max(0,z) (Nair and Hinton 2010) for the Model-2 to op-
timize the accuracy. Both models use a total of 150 epochs.
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T(Hours) 4(12) | 6(18) | 8(24) | 12(36)
Size of dataset 3189 | 2843 | 2544 | 2039
5 | 5-fold 935 | 784 | 731 | 6.19
_ﬁ Validation | + + + +
o 0.63) | (1.09) | (0.71) | (0.69)
§ Fani 266 | 1.72 | 343 | 5.53
% [ Gaja 434 [ 337 | 478 | 429
Bulbul 435 | 3.63 | 3.86 | 3.40
5 | 5-fold 517 | 401 | 424 | 387
N Validation | + + + +
2 0.51) | (0.30) | (0.40) | (0.36)
%ﬂ Fani 203 | 137 | 264 | 4.10
Gaja 285 | 215 | 351 | 347
Bulbul 230 | 1.68 | 227 | 235

Table 2: RMSE and MAE for landfall’s intensity prediction
for different values of 7.

The structures of Model-1 and Model-2 are shown in Fig-
ure 3 which have been generated using Keras APL

We have used the GPU available on Google Colab to
run the experiments which provides one of the GPU Nvidia
K80s, T4s, P4s or P100s depending on availability. On av-
erage, Model-1 takes 80 seconds and Model-2 takes 90 sec-
onds to complete 150 epochs.

Results and Analysis

The models (Model-1 and Model-2) take certain number of,
say T', continuous data points of a TC, anytime during the
course of the TC and predict the intensity, latitude and lon-
gitude, and time of its landfall with high accuracy. We also
report the distance error in kilometers (kms) from the pre-
dicted landfall location to actual landfall location. We have
reported the 5-fold validation mean accuracy of our model
both in terms of RMSE and MAE for T' = 4, 6, 8, and 12
(that is 12h, 18h, 24h, or 36h) along with standard deviation
(std). To further validate the performance of our model, we
have also reported the model performance for three recent
devastating cyclones Bulbul, Fani, and Gaja. These three cy-
clones are not the part of the training dataset. The RMSE and
MAE values reported for these three cyclones are average of
RMSE and MAE over a sliding window of size T starting
from 1st data point till the landfall.

In Tables 2 and 3, the RMSE and MAE of prediction of
intensity at landfall and time remaining to landfall are re-
ported for different values of T, respectively, along with the
size of training dataset. For T' = §, that is if 24 hours data of
cyclone is used then the intensity and time can be predicted
within an MAE of 4.24 knots and 4.5 hours, respectively.
From Table 1, we can see that the range of MSWS for all
Grades, except Grade 2, is at least 10, this implies that with
a very high probability, the model will predict the correct in-
tensity grade at landfall of a TC. Moreover, since we obtain
such good accuracy with only 24 hours of observation and
the landfall occurs on average at the 80th hour in NIO, the
model can help authorities to prepare well advance in time
to take any action. The performance of model is even better
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Figure 6: Predicted and actual intensity and time of landfall of Bulbul for T" = 8.

than 5-fold validation accuracy for cyclones Bulbul, Fani,
and Gaja as evident from Tables 2 and 3.

In Figures 4, 5, and 6, the predicted intensity and actual
intensity along with predicted time to landfall and actual
time to Landfall are shown for 7" = 8 (24 hours) for cy-
clones Bulbul, Fani, and Gaja, respectively. To obtain these
figures, we choose a sliding window of 24 hours and get the
prediction from the model. For example, the values at 27th
hour and 75th hour are the predictions using the data be-
tween Oth and 24th hours and 48th and 72nd hours, respec-
tively. It is evident that the model has consistently performed
well irrespective of whether the prediction point is close to
the landfall or far from the landfall. One should note that
these three cyclones took a long time (>141 hours) to hit
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the coastal region, despite this the model’s predictions are
consistently good even at the beginning of the cyclone.

In Table 4, the RMSE and MAE of latitude and longitude
prediction (in degrees) at landfall are reported for different
values of T'. A slight error in latitude and longitude may lead
to an error of several kilometers in the location. Therefore,
we also report the corresponding distance error in kilome-
ters. The distance error is calculated using the distance be-
tween actual and predicted landfall location. For example,
for T' = 8, the model can predict the landfall location with
an error of 51.7 kms.

In the Figures 7, 8, 9, the predicted latitude, longitude, and
actual latitude, longitude at landfall are shown for 7' = 8
for cyclones Bulbul, Fani, and Gaja, respectively. It is once
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Figure 9: Predicted and Actual Landfall Latitude/Longitude of Bulbul cyclone for T = 8

again evident that the model has consistently performed well
irrespective of whether the prediction point is close to land-
fall or far from landfall.

The standard deviation among 5-fold for all the three pre-
diction problems is quite low, means the model performs
consistently and it can be reliably deployed for above stated
prediction problems. We compare our results with the land-
fall forecasts reported by IMD on its website®. IMD provides
average forecasting error of location and time of landfall for
each year starting from 2003. Error values reported from ear-
lier years are large and are not suitable for a fair comparison.
Therefore, we have calculated last 4 or 5 years (as per data

Shttp://www.rsmenewdelhi.imd.gov.in/index.php?option=
com_content&view=article&id=45&Itemid=191&lang=en
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availability) average MAE scores reported at the IMD web-
site and provided in the Table 5. The lead time of X hours
in Table 5 means that forecast was done X hours before the
landfall. MAE reported for our model in Tables 4 and 3 are
either less or comparable to values in Table 5. We would
like to emphasize that our testing set may include any cy-
clone starting from 1982 and this may further would have
increased the 5-fold validation error values. Another likely
reason behind the higher 5-fold validation error is the re-
curving cyclones. Generally, the TC’s related studies do not
consider cyclones with loops. Our model do not have any
such restriction. Further, when we compare the results for
recent cyclones like Bulbul (2019), Fani (2019), and Gaja
(2018), the difference between errors reported by us and



T(Hours) 4(12) | 6(18) | 8(24) | 12(36)
Size of dataset 3189 | 2843 | 2544 | 2039
5 [ 5-fod 1121 | 10.14 | 8.08 | 8.52
N Validation | + + + +
3 (1.03) | (1.78) | (0.95) | (1.51)
§ Fani 3.6 2.03 | 238 5.34
&% [Gaja 6.0 565 | 4.0 6.17
Bulbul 4.0 34 325 | 621
S | 5-fold 625 | 526 |45 5.42
% | Validation | + + + +
H 0.25) | (0.16) | (0.58) | (1.17)
2 Fam 26 137 [ 138 470
= [Gaja 32 [ 274 |30 [490
Bulbul 23 19 .77 | 5.08

Table 3: RMSE and MAE of landfall’s time prediction for
different values of T'.

IMD is striking. For example, for Bulbul, even for a large
lead time, say 72 hours, we can predict time and location of
its landfall within an error of 1.77 hours and 18.2 kms, re-
spectively while the corresponding errors from IMD are 9.6
hours and 112.5 kms, see Table 5.

The performance of few other models in mentioned in Ta-
ble 6. The ANN model has 5 hidden layers of sizes 1024,
512, 256, 128 and 32 with activation function Swish(2x).
The GRU based RNN model has same configurations as the
earlier defined LSTM models. The 1D-CNN (Kim 2014)
model has 2 convolutional layers each with 512 filters, with
Batch-Normalization (Ioffe and Szegedy 2015), Dropout
(Srivastava et al. 2014), a max pool layer, 8 dense layers
each of size 512, with ReLLU activation function and Adam
optimizer.

Conclusion

We presented a model which used LSTM network based on
RNN to predict the intensity, location, and time of landfall
of a tropical cyclone in the North Indian Ocean. The model
predicts the landfall characteristics with high accuracy and
beat the model used by India Meteorological Department on
recent cyclones. The biggest advantage of this model over
earlier models is that it is trained to provide prediction using
only few continuous data points taken from anywhere from
the course of the cyclone. Using our model, the landfall char-
acteristics of a cyclone can be predicted with high accuracy
after a few hours after the origin of the cyclone which will
provide ample time to disaster managers to decide if they
need to evacuate certain areas (depending on intensity pre-
diction) and if they need to then precisely when (depending
on time prediction) and which area (depending on location
prediction). In a future work, we want to include the charac-
teristics of terrain from which the cyclone is passing as an
input feature in the model. We also want to extend this work
for Atlantic and Pacific oceans.
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T(Hours) 4(12) | 6(18) [ 8(24) [ 12(36)
Size of dataset 3189 | 2843 | 2544 | 2039
5-fold Lati | 0.95 | 0.67 | 0.52 | 0.39
S Validation + + + +
3 0.04)| (0.06)| (0.12)| (0.15)
Al Cong | 1.30 | 0.85 | 0.72 | 0.50
7 + + + +
> 0.14)| (0.04)| (0.08)] (0.10)
. Lati | 033 | 0.16 | 0.1T | 0.13
Fani
Long | 0.60 | 0.36 | 0.19 | 0.23
Gaja Lati | 0.85 | 053 | 022 | 0.13
Long | 0.45 | 0.22 | 0.07 | 0.09
Bulbal Lati | 0.19 | 0.15 | 0.10 | 0.09
Long | 037 | 026 | 0.17 | 0.19
5-fold Lati | 0.52 | 0.33 | 0.24 | 0.19
= Validation + + + +
g (0.02)| (0.01)| (0.02)| (0.01)
3 Long | 0.75 | 046 | 0.37 | 0.29
= + + + +
= (0.05)| (0.02)| (0.02)| (0.02)
Fani Lati | 027 | 0.1 | 0.08 | 0.10
Long | 041 [ 026 | 0.14 | 0.19
Gaa Lati | 028 | 0.16 | 0.10 | 0.1
Long | 0.15 | 0.09 | 0.05 | 0.07
Bulbal Lati | 0.15 | 0.09 | 0.07 | 0.07
Long [ 029 [ 0.19 | 0.14 | 0.16
5 | 5-fold Validation | 1063 | 67.0 | 51.7 | 41.2
z + + + +
H (5.79)| (2.51)| (1.20)| (3.12)
= Fani S6.1 [ 324 | 187 | 246
z Gaja 385 | 227 | 151 [ 151
A Bulbul 379 [ 247 | 182 | 19.9

Table 4: RMSE, MAE and Distance Error (kilometers) for
Landfall Location Prediction for different T’s

Lead Time (hours) 36 48 60 72
Landfall Time MAE 496 | 553 | 6.8 9.6
Landfall Distance MAE | 42.84 | 78.08 | 92.6 | 112.5

Table 5: 4/5 year (2015-2019) average accuracy reported by
IMD for cyclones in NIO.

Target/Model ANN | RNN (GRU) | 1D-CNN
Intensity (knots) 10.78 | 4.8 9.33
Landfall Time (hrs) | 9.55 5.21 9.66
Lati (degree) 0.57 0.38 0.64
Long (degree) 0.84 | 0.45 0.96
Distance(kms) 1184 | 61.8 135.04

Table 6: 5-fold Validation MAE of ANN, RNN(GRU based)
and 1D-CNN models for T = 8.
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