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Abstract

Unprecedented data collection and sharing have exacerbated
privacy concerns and led to increasing interest in privacy-
preserving tools that remove sensitive attributes from im-
ages while maintaining useful information for other tasks.
Currently, state-of-the-art approaches use privacy-preserving
generative adversarial networks (PP-GANs) for this purpose,
for instance, to enable reliable facial expression recognition
without leaking users’ identity. However, PP-GANs do not
offer formal proofs of privacy and instead rely on experi-
mentally measuring information leakage using classification
accuracy on the sensitive attributes of deep learning (DL)-
based discriminators. In this work, we question the rigor of
such checks by subverting existing privacy-preserving GANs
for facial expression recognition. We show that it is possi-
ble to hide the sensitive identification data in the sanitized
output images of such PP-GANs for later extraction, which
can even allow for reconstruction of the entire input im-
ages, while satisfying privacy checks. We demonstrate our
approach via a PP-GAN-based architecture and provide qual-
itative and quantitative evaluations using two public datasets.
Our experimental results raise fundamental questions about
the need for more rigorous privacy checks of PP-GANs, and
we provide insights into the social impact of these.

Introduction
The availability of large datasets and high performance com-
puting resources has enabled new machine learning (ML)
solutions for a range of application domains. However, as
is often the case with transformative technologies, the ubiq-
uity of big data and ML raises new data privacy concerns.
Given the emergence of applications that use personal data,
such as facial expression recognition (Chen, Konrad, and
Ishwar 2018) or autonomous driving (Xiong et al. 2019) one
must take care to provide data relevant to the specific ap-
plication without inadvertently leaking other sensitive infor-
mation. Despite recent legislative efforts to protect personal
data privacy—for instance, the General Data Protection Reg-
ulation (GDPR) passed by EU—technology must also play
a role in safeguarding privacy (Tene et al. 2019).

Consider a scenario where a user wants to use their pri-
vate data with an untrusted application, as in Figure 1. For
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Figure 1: Typical use case for a PP-GAN sourced from a
third-party, where a user wants to sanitize their data for use
with an (untrusted) application.

privacy, the user needs to remove sensitive—and application
irrelevant—attributes from their data while preserving rel-
evant details. This can be achieved using a tool typically
sourced from a third-party provider (e.g. Generated Pho-
tos1)). To select a tool, the end user performs their own “pri-
vacy check”, evaluating that the tool satisfies their definition
of privacy.

To this end, recent research proposes the use of deep
neural networks (DNNs), specifically, generative adversar-
ial networks (GANs) for sanitizing data of sensitive at-
tributes (Wu et al. 2019; Maximov, Elezi, and Leal-Taixé
2020; Chen, Konrad, and Ishwar 2018). These so-called
“privacy-preserving GANs” (PP-GANs) can sanitize im-
ages of human faces such that only their facial expres-
sions are preserved while other identifying information is
replaced (Chen, Konrad, and Ishwar 2018). Other exam-
ples include: removing location-relevant information from
vehicular camera data (Xiong et al. 2019), obfuscating the
identity of the person who produced a handwriting sam-
ple (Feutry, Piantanida, and Duhamel 2020), and removal
of barcodes from images (Raval, Machanavajjhala, and Cox
2017). Given the expertise required to train such models,
one expects that users will need to acquire a privacy preser-
vation tool from a third party or outsource GAN training,
so proper privacy evaluation is paramount. In the aforemen-
tioned works, researchers note a trade-off between “utility”
and “privacy” objectives—they suggest that PP-GANs offer

1https://generated.photos/anonymizer
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a panacea that achieves both.
The privacy offered by PP-GANs is typically measured

using empirical metrics of information leakage (Chen, Kon-
rad, and Ishwar 2018; Xiong et al. 2019; Feutry, Piantanida,
and Duhamel 2020). For instance, Chen, Konrad, and Ish-
war (2018) use the (in)ability of deep learning (DL)-based
discriminators to identify secret information from sanitized
images as the metric for privacy protection. However, em-
pirical metrics of this nature are bounded by discriminators’
learning capacities and training budgets; we argue that such
privacy checks lack rigor.

This brings us to our paper’s motivating question: are
empirical privacy checks sufficient to guarantee protec-
tion against private data recovery from data sanitized by a
PP-GAN? As is common practice in the security commu-
nity, we answer this question in an adversarial setting. We
show that PP-GAN designs can be subverted to pass pri-
vacy checks, while still allowing secret information to be
extracted from sanitized images. Our results have both foun-
dational and practical implications. Foundationally, they
establish that stronger privacy checks are needed before
PP-GANs can be deployed in the real-world. From a prac-
tical stand-point, our results sound a note of caution against
the use of data sanitization tools, and specifically PP-GANs,
designed by third-parties. Our contributions include:

• We provide the first comprehensive security analysis of
privacy-preserving GANs and demonstrate that existing
privacy checks are inadequate to detect leakage of sensi-
tive information.

• Using a novel steganographic approach, we adversarially
modify a state-of-the-art PP-GAN to hide a secret (the
user ID), from purportedly sanitized face images.

• Our results show that our proposed adversarial PP-GAN
can successfully hide sensitive attributes in “sanitized”
output images that pass privacy checks, with 100% secret
recovery rate.

We first provide background on PP-GANs and associated
empirical privacy checks. We then formulate an attack sce-
nario to ask if empirical privacy checks can be subverted.
Next, we outline our approach for circumventing empirical
privacy checks. We present our experimental work and fur-
ther discuss our findings in more detail. We frame our work
with reference to prior related work before we conclude in
the end.

Background
In this section, we describe the relevant background on our
representative PP-GAN baseline and how their privacy guar-
antees are evaluated.

Representative PP-GAN Baseline
We adopt the PPRL-VGAN framework proposed by Chen,
Konrad, and Ishwar (2018) as our experimental focus2 and

2PPRL-VGAN bears similarities to other related prior works,
particularly with respect to privacy checks. We discuss these in
more detail in the Related Work section.
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Figure 2: Baseline PP-GAN Architecture

use similar notation. PPRL-VGAN produces a PP-GAN
with a variational autoencoder-generative adversarial net-
work (VAE-GAN) architecture. The generator network, G0,
comprises an encoder, a Gaussian sampling block, and a de-
coder, as shown in Figure 2. The PP-GAN is designed to re-
place the “user-identity” in an image while preserving facial
expression information.

Formally, given an input face image I with user ID
yid ∈ {0, 1, · · · , Nid − 1}, expression label yep ∈
{0, 1, · · · , Nep − 1}, and a target ID c, the generator G0

synthesizes a realistic face image I ′ that belongs to the tar-
get ID c while preserving expression yep. The user speci-
fies the target identity using a one-hot encoded identity code
c ∈ {0, 1}Nid such that I ′ = G0(I, c). Multiple discrimina-
tors, described next, are used to train this PP-GAN.

Discriminator Unlike conventional GAN settings (Good-
fellow et al. 2014), the training of PPRL-VGAN employs
three discriminators, D0, D1, and D2, responsible for re-
al/synthetic face discrimination, ID classification, and facial
expression classification, respectively. Specifically,D0 takes
a real or synthetic image as input and outputs the probability
of it being real. The probability of image I being classified
as real is denoted byD0(I). Similarly,D1

yid(I) andD2
yep(I)

denote the probabilities of I being an image of user yid and
having expression yep, respectively. The discriminators are
trained simultaneously to maximize the combined loss func-
tion LD which is expressed as:

LD(D,G0) =λ
0
D

(
EI∼pd(I) logD

0(I)+

EI∼pd(I),c∼p(c) log
(
1−D0

(
G0(I, c)

)))
+

λ1DE(I,yid)∼pd(I,yid) logD
1
yid(I)+

λ2DE(I,yep)∼pd(I,yep) logD
2
yep(I)

(1)
Here, λ0D, λ1D and λ2D are scalar constants weighting the

different loss components for real/synthetic image discrim-
ination, input image ID recognition, and input image facial
expression recognition.

Generator The generator network has an encoder-decoder
architecture. The encoder transforms I into two intermediate
latents that are fed to a Gaussian sampling block to obtain an
“identity-invariant face image representation” f(I), i.e., the
encoder learns a mapping function with random Gaussian
sampling, f(I) ∼ q(f(I)|I). The decoder further maps the
concatenation of f(I) and c into the synthetic face image I ′.

The generator G0 aims to generate synthetic face im-
age I ′ as real as possible to fool discriminator D0. At the
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same time, G0 learns to synthesize I ′s that are classified
by D1 with the target ID specified by c. In addition, the
privacy-protected image I ′ should maintain the expression
yep from I (as classified by D2). The combined loss func-
tion LG(D,G0) to minimize is:

LG(D,G0) = λ0GEI∼pd(I),c∼p(c) logD
0
(
1−G0(I, c)

)
+

λ1GEI∼pd(I),c∼p(c) logD
1
c

(
1−G0(I, c)

)
+

λ2GE(I,yep)∼pd(I,yep),c∼p(c) logD
2
yep

(
1−G0(I, c)

)
+ λ3GKL

(
q(f(I)|I)‖p(f(I))

)
(2)

The fourth loss term is a KL divergence loss used in VAE
training that measures the distance between a prior distri-
bution on the latent space p(f(I)) ∼ N (0, 1) and the con-
ditional distribution q(f(I)|I). Here, λ0G, λ1G, λ2G, and λ3G
weight the loss components between real/synthetic image
discrimination, image ID classification, and expression clas-
sification respectively by D0, D1, and D2, and the last KL
divergence loss.

Empirical Privacy Checks
In the current PP-GAN literature, information leakage is
measured using empirical privacy checks that quantify the
ability of a separately trained DNN discriminator to pick up
trace artifacts post-sanitization that correlate with the sensi-
tive attributes. In this work, we focus on two measures based
on attack scenarios (ASs) proposed by Chen, Konrad, and
Ishwar (2018); we refer to these as the “weak” and “strong”
privacy checks. For the subsequent discussion, we will as-
sume that the PP-GAN is trained using a training dataset
of face images and corresponding user IDs and expressions,
Itrain, y

id
train, y

ep
train, and a test dataset Itest, yidtest, y

ep
test is

used to perform the privacy checks.

Weak privacy check This check corresponds to AS I of
Chen et al.’s work, and examines if a discriminator trained
on images from the training dataset and their corresponding
IDs (i.e., {Itrain, yidtrain}) can recover the original IDs from
images I ′test = G0(Itest, c) with c picked at random from
{0, 1}Nid . In other words, if the ID returned by the discrim-
inator given I ′test is yidtest then the privacy check succeeds.
We refer to the output test sanitized image as I ′test,c. This
check is “weaker” than the next check because its discrim-
inator is trained on the distribution of input images and not
the distribution of the PP-GAN’s sanitized outputs.

Strong privacy check This check corresponds to AS II
of Chen et al.’s work, where the user emulates a stronger
adversary and trains a discriminator on sanitized data with
the underlying ground-truth identities. To address the short-
comings of the weak check, the strong privacy check mea-
sures the classification accuracy of a discriminator trained
on a dataset obtained by passing training images throughG0.
That is, {G0(Itrain, c), y

id
train} is used to train the discrimi-

nator. In other words, the discriminator is trained on the dis-
tribution of the PP-GAN’s sanitized outputs to recover the
original IDs from sanitized test images.

Subverting PP-GANs
We now ask if an adversary can train an adversarial PP-GAN
Gadv

0 that passes the weak and strong privacy checks, but en-
ables recovery of the sensitive attribute, yid, from sanitized
outputs I ′. This question reflects the following real-world
scenario (Figure 3): an adversary, say Alice, trains Gadv

0
and releases it publicly. A user, Bonnie, downloads Gadv

0 ,
verifies that it passes both weak and strong privacy checks
(using validation data), and then uses Gadv

0 to sanitize her
private test images and releases them publicly. Can Alice (or
a collaborator) recover secrets from the sanitized images?

Goals Alice seeks to design a PP-GAN Gadv
0 with the fol-

lowing goals:

• Utility: Gadv
0 ’s outputs, i.e., I ′ = Gadv

0 (I, c) should have
the same expression as that of its input I and I ′ should be
classified as ID c;

• Privacy: the sanitized images should pass both weak and
strong privacy checks; and

• Recovery: Alice should be able to recover the ID corre-
sponding to image I from the sanitized image I ′.

Constraints In addition to meeting these goals, Alice
wants to ensure that Gadv

0 is still a plausible implementation
of a PP-GAN to ensure that Bonnie does not identify it as
adversarial on inspection (Bonnie is given white-box access
to Gadv

0 ). As such, Alice must obey the following:

• Gadv
0 still uses the VAE-GAN architecture, i.e., it is a neu-

ral network that comprises an encoder, a sampling block,
and a decoder;

• Gadv
0 takes in the same inputs as the baseline, which are

the input image I and new ID code c;
• Gadv

0 is allowed to be deeper than the baseline, but the ex-
tra layers must be ones that are commonly used in typical
neural networks (NNs), such as convolutional layers.

While the discussion thus far has been in the context of a
real-world threat, an attack that satisfies these goals and con-
straints has deeper implications on the PP-GANs as tools for
user privacy preservation. Specifically, a successful subver-
sion shows that existing privacy checks are insufficient to
fully catch information leakage in PP-GANs. If one can de-
sign an adversarial PP-GAN that easily circumvents these

Third-Party	Tool	
Provider	(Alice) It's	Bonnie!

Subverted	
PP-GAN

Bonnie Ray

End	User	
Privacy	Check

Private
Data

Sanitized
Data

Figure 3: Overview of the Attack Scenario
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privacy checks, it raises questions as to whether information
could be leaked via inadvertent design errors as well.

Proposed Approach
We now describe our proposed construction of an adversar-
ial PP-GAN that circumvents both weak and strong privacy
checks. We begin by discussing a straw man solution and
then our implementation.

A “Straw Man” Solution
To embed sensitive attributes in sanitized images we turn
to steganography, a family of techniques that seeks to hide
secret information in ordinary files, such as images, without
being detected. The secret data can then be extracted from
the images received by the designated party.

One possible approach to realize our scheme is to use a
conventional steganography tool (e.g., Steghide3) to embed
the user yid in the sanitized face images I ′. In fact, we find
that this straw man solution successfully hides the sensitive
data. The resultant images pass both privacy checks (results
are in the Experimental Work section). However, recall that
we also require our adversarial modifications to be expressed
as layers of a NN. Thus, as we discuss next, we attempt to
implement steganographic operations directly.

Adversarial PP-GAN Design
Implementing steganography in the context of a PP-GAN
poses several challenges. First, the input to an image
steganography tool is a “cover image” and the secret; in our
setting, the cover image is I ′ but the secret (user yid) is not
directly available and must be extracted from I . For this, we
implement a secret extraction stage. Second, as noted above,
the steganography process must be converted into NN layers
which poses its own challenges. Finally, Alice must be able
to extract the secret from the secret-embedded “sanitized”
image I ′′, which also requires special steps. We illustrate the
adversarial PP-GAN in Figure 4 which can subsequently be
consolidated to become the final, more innocuous architec-
ture in Figure 5. After explaining the NN building blocks for
our approach, we describe the multi-step training process.

Secret extraction The first step is to extract the informa-
tion pertaining to the secret yid from the input image I .
Since PP-GAN’s encoder already has several layers to ex-
tract relevant features of I , we can extract yid by adding an
additional fully connected (FC) layer FC 0 in parallel with
FC 1 and FC 2 (shown as ¬ in Figure 4). The output of FC 0
is a secret that allows recovery of yid. In this work, we con-
sider two schemes: Scheme 1—a direct encoding of yid as a
one-hot encoded vector and Scheme 2—a vector represen-
tation from which the original image I can be reconstructed
(and from which yid can be deduced).

Secret embedding Our secret embedding method is in-
spired by steganographic techniques that hide the bits of
a secret in the cover image’s frequency domain. This is
achieved by manipulating the least significant bits (LSBs)

3http://steghide.sourceforge.net/
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Figure 4: Initial Adversarial PP-GAN Architecture

of the discrete cosine transform (DCT) coefficients and re-
duces the visible impact of manipulating an image. In our
approach, we embed the secret at random locations (DCT
coefficients) that are input-dependent. To do so, we use yep
and target ID c as randomness seeds for selecting the DCT
coefficients for LSB replacement. Specifically, yep is used
to select which DCT coefficients in which to embed the se-
cret, while c permutes the secret before it is embedded. Note
that both selection and permutation can be expressed as lin-
ear operators and are therefore implementable as NN lay-
ers (represented as  in Figure 4). As yep is encoded in z,
the PP-GAN encoder’s output latent, and c is explicitly pro-
vided, we can simply use bits of their concatenated latent as
randomness seeds.

To reduce the impact of LSB replacement of DCT coeffi-
cients in the final image, we embed secrets only in the LSBs
of middle-frequency position (Sheisi, Mesgarian, and Rah-
mani 2012) and select frequency positions that tend to have
larger absolute values. To determine these locations, we find
the average of the absolute values of all middle-frequency
DCT coefficients in a dataset of (honestly) sanitized images
and choose positions with the largest mean. Once the secrets
are stealthily embedded, the adversarial PP-GAN performs
inverse DCT conversion (® in Figure 4) to obtain the final
“sanitized” image, I ′′.

Secret Recovery The secret recovery stage seeks to ex-
tract yid from I ′′. Note that secret recovery is not part of the
adversarial PP-GAN but is a separate process performed by
Alice. To extract the secret ID information of the user’s in-
put image I , we first classify image I ′′ into expression y′′ep
and ID y′′id. Assuming that y′′ep ≈ yep and y′′id ≈ c, we can
now recover the locations where the secret is embedded and
its permutation. Finally, we perform a DCT transformation
on I ′′ and extract the secret from the LSBs of the selected
DCT coefficients. In scheme 2, where the secret is the vector
representation of the original image, Alice can train and use
image recovery decoder NN to reconstruct I .

NN-based Implementation
We now discuss two practical issues with respect to our ad-
versarial PP-GAN implementation: ensuring that all func-
tionality is implemented using NN layers, and training the
final architecture.

NN Layers As previously mentioned, the secret extraction
leverages existing layers of the PP-GAN (encoder) and an
additional FC layer. The secret embedding stage can also
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be implemented as a multi-layer “secret generation” NN (
in Figure 4). We use the same architecture as the benign
PP-GAN’s decoder with an added DCT layer at the end; it is
trained to permute and embed the secret. Finally, DCT, ad-
dition of LSBs and inverse-DCT can each be implemented
using single NN layers. DCT transformations are simply a
linear computation which can be implemented as a convolu-
tion, so we manually design these as proposed by Liu et al.
(2020). The resulting architecture is indeed a multi-layer NN
although it has some parallel paths that skip across layers.
Following training, we can make the adversarial PP-GAN
appear less suspicious through a merging process4 using
simple transformations and increasing layer dimensions to
produce the architecture in Figure 5.

Training Training the adversarial NN involves two steps.
First, we need to train the adversarial PP-GAN to extract se-
cret data corresponding to yid. In scheme 1, we first train the
PP-GAN with the added FC 0 layer and introduce an addi-
tional loss term to the generator loss function LG that mea-
sures the L2 distance between the output of the FC 0 and
yid (expressed as a one-hot vector). In doing so, the trained
network produces both an honestly sanitized image I ′, as be-
fore, but also extracts the secret y′id ≈ yid. In scheme 2, we
do the same, but the additional loss term is based instead on
the distance between I and the reconstructed image recov-
ered using the output of FC 0 by an image recover decoder
(see below). In both schemes, we then freeze the encoder/de-
coder and FC 0 weights and focus on the secret generation
network to embed the secret data at locations and permuta-
tions specified by yep and c. We train the secret generation
network to minimize the distance of the outputted secret ma-
trix and the manually computed secret matrix using the out-
put of FC 0, yep and c. The discriminators are the same as
for the baseline PP-GAN.

In scheme 2, where the secret is a vector representation of
I , the adversary also trains an image recovery decoder using
the same architecture as the decoder in a benign PP-GAN.
The recovery decoder takes as input the output of FC 0
(which will be the recovered secret).

Experimental Work4

Datasets
We validate our proposed approach on two facial expres-
sion datasets, FERG (Aneja et al. 2016) and MUG (Aifanti,

4More details are in the Appendix in the arXiv version https:
//arxiv.org/pdf/2009.09283.pdf.

Papachristou, and Delopoulos 2010). We split FERG into
47382 training images and 8384 test images with six sub-
jects and seven different expressions. For MUG, we select
the eight subjects with the most images available. Since
MUG images are extracted from videos, the initial and fi-
nal 20 frames in a clip often have neutral expressions so we
ignore those frames, resulting in 8795 training images and
1609 test images with seven different expressions.

Evaluation Metrics
We evaluate the proposed adversarial PP-GAN in terms of
three metrics, as described below.

Utility Measurement We measure the utility of the san-
itized images via the expression classification accuracy of
DL-based discriminators trained on them. Specifically, the
expression classification accuracy of a discriminator trained
on {I ′train, yep} and tested on I ′test is used as the utility
check for the sanitized image dataset. Ideally, we would like
the utility of data sanitized by the adversarial PP-GAN to be
the same as the baseline PP-GAN.

Privacy Measurement The privacy of sanitized images
is measured using the weak and strong privacy checks de-
scribed in the Background section. The checks measure the
accuracy with which DL-based discriminators can classify
the original ID from sanitized face images. Ideally, the ad-
versarial PP-GAN should pass both privacy checks as well
as the baseline.

Recoverability Finally, we measure the ability of the ad-
versary to recover the original ID (for scheme 1), the latent
representation of the input image (for scheme 2) or the orig-
inal image itself (for scheme 2) from sanitized face images.
The metrics used for each scenario are as follows.

ID Recovery Accuracy: is used for scheme 1 where the
adversary seeks to recover the ID of input image I and is
defined as the fraction of sanitized test images for which the
adversary correctly recovers the secret ID.

Latent Vector Accuracy: is used for scheme 2 where the
adversary seeks to recover the latent vector corresponding
to input image I (from which image I can be reconstructed).
Since the latent is a binary vector, we define the latent vector
accuracy as the fraction of bits of the recovered latent that
agree with the actual latent computed on image I .

Image Reconstruction Error: is used in scheme 2 to quan-
tify the success of the adversary in reconstructing image I
and is defined as the MSE distance between reconstructed
images and the original input images.

Experimental Results
We begin by discussing our results on the FERG dataset for
which the adversary’s goal is ID recovery (scheme 1). The
adversarially trained PP-GAN for FERG has the same utility
accuracy as the baseline (100%). Results for the privacy and
recoverability metrics are shown in Table 1 for the baseline
PP-GAN (Baseline), the adversarial PP-GAN (Adv.), and for
the purposes of comparison, a straw man solution in which
we use the Steghide binary to embed the ID into the baseline
PP-GAN’s sanitized output.
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I I ′ I ′′

Figure 6: Selected Adversarial PP-GAN input images I ,
baseline sanitized images I ′, and outputs I ′′ with hidden se-
cret (FERG dataset)

Metric Baseline Steghide Adv.

Weak Privacy Check 0.17 0.17 0.18
Strong Privacy Check 0.30 0.30 0.30
ID Recovery Acc. - 1.0 1.0

Table 1: Privacy and recovery metrics on the FERG dataset
for the baseline PP-GAN, using Steghide, and with the pro-
posed adversarial PP-GAN (Adv.).

We observe that the adversarial PP-GAN has the same
accuracy for the strong privacy check and only marginally
higher accuracy for the weak privacy check compared to the
baseline (recall that lower accuracies imply greater privacy).
We conclude that the adversarial PP-GAN would therefore
pass the privacy checks. At the same time, the adversarial
PP-GAN is able to recover the correct ID from sanitized im-
ages in all cases. The results from Steghide are identical ex-
cept that it has the same accuracy for the weak privacy check
as the baseline. This is because Steghide algorithm is fairly
sophisticated, but cannot directly be used for our purposes
since it is not implemented as an NN.

Figure 6 shows examples of images sanitized by the base-
line and adversarial PP-GANs (centre and right columns, re-
spectively) along with the input images (left column). Note
that the sanitized images produced by the baseline and ad-
versarial networks are visually indistinguishable.

Next we present our results on the MUG dataset for which
the adversary’s goal is ID recovery (scheme 1) and input im-
age recovery (scheme 2). As with FERG dataset, the adver-
sarially trained PP-GANs have the same utility accuracy as
the baseline (100%).

The privacy and recoverability metrics for ID recovery are
shown in Table 2; as with the FERG dataset, we observe that
the weak and strong checks on the adversarial PP-GAN have
only marginally higher accuracy compared to the baseline,
and that adversary is able to recover the correct ID from 97%
of sanitized images. Steghide has the same privacy check
accuracy as the baseline and 100% recovery rate.

I I ′ I ′′ Ir

Figure 7: Selected Adversarial PP-GAN input images I ,
baseline sanitized images I ′, outputs I ′′ with hidden secret,
and reconstructed input images Ir (MUG dataset, 18-bit se-
crets).

Metric Baseline Steghide Adv.

Weak Privacy Check 0.14 0.14 0.18
Strong Privacy Check 0.29 0.29 0.30
ID Recovery Acc. - 1.0 0.97

Table 2: Privacy and recovery metrics on the MUG dataset
for the baseline PP-GAN, using Steghide, and with the pro-
posed adversarial PP-GAN (Adv.).

Figure 7 shows examples of sanitized images for the base-
line and adversarial PP-GANs as well as the images recov-
ered by the adversary. The sanitized images from the base-
line and adversarial PP-GANs are visually indistinguishable
while the recovered images closely resemble the originals.

Table 3 tabulates the strong privacy check metric, latent
vector reconstruction error and image reconstruction error
for different latent vector sizes. As larger latent vectors are
steganographically embedded in sanitized images, we ob-
serve lower reconstruction error at the expense of an increase
in the accuracy of the strong privacy check. In all cases, the
latent vector is reconstructed with> 97% accuracy. Overall,
an 18-bit latent suffices to pass the privacy checks with low
reconstruction errors.

Discussion
Privacy-preserving GANs have been viewed as somewhat
of a panacea to the increasing concerns around surveillance
technology. Our results indicate that this view might be too
optimistic. Given the concerns that our work raises about the
rigor of empirical privacy checks, there is a need for better
evaluations of privacy. In this section, we discuss further in-
sights following on from our experimental work.
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Latent Vector Bit-length 18 24 30 36 42 48 54 60

Strong Check Acc. 0.300 0.318 0.322 0.300 0.328 0.384 0.371 0.365
Latent Vector Recons. Acc. 0.982 0.982 0.981 0.978 0.979 0.978 0.980 0.979
Image Recons. Error 6.00e-4 4.60e-4 4.22e-4 4.55e-4 3.82e-4 3.77e-4 3.36e-4 3.60e-4

Table 3: MUG dataset, Results after Training Adversarial PP-GAN architecture

Secret Hiding
More secret data bits can be hidden by the adversarial
PP-GAN trained for the MUG dataset compared to that
trained for the FERG dataset. This is because real human
face data provides more texture variations in pixel-space,
which is also reflected in the output sanitized images, and
this likely introduces more “distractions” for the privacy
check discriminators. The fact that DL-based discriminators
are sensitive to such distractions gives us further skepticism
into their use as privacy checks.

Embedding more bits in scheme 2 should help to reduce
the image reconstruction error but this is counterbalanced by
increasing the difficulty of learning to perform secret em-
bedding. If the secret embedding stage is imperfect, there is
higher latent vector recovery error and this results in better
subversion of the privacy check, as in the case where we hide
a 60-bit latent (Table 3).

DNN-based Steganography
Given our goal of having the adversarial PP-GAN imple-
mented entirely as a NN, one possible solution is to attach
a DNN-based steganography tool (Zhang et al. 2019; Hayes
and Danezis 2017; Zhu et al. 2018) to the benign PP-GAN.
The hiding network takes as inputs a cover image and a se-
cret and outputs an image with the secret message hidden.
The goal of these DNN-based steganography approaches is
to produce secret-embedded images that are indistinguish-
able from cover images with respect to the probability that
they contain a secret (as measured by empirically a DL-
based discriminator). An accompanying reveal network ex-
tracts the secret message from the secret-embedded image.
However, this approach is insufficient for our adversarial set-
ting as the resultant network will not pass the strong privacy
check. As long as there is a DL-based reveal network for se-
cret extraction, we surmise that it is possible to train a DL-
based discriminator to classify sanitized images into classes
of sensitive attributes.

Threats to Validity
The privacy check measures privacy leakage via classifica-
tion accuracy of a DL-based discriminator on sensitive at-
tributes. Such networks’ accuracy is affected by various fac-
tors, including the size of the training dataset, network ar-
chitectures, optimization techniques, weights initialization,
and training epochs, etc. Thus, the privacy check measure-
ment reported in this paper is only representative of our ex-
perimental settings. We would expect different accuracy ob-
tained for a larger dataset, different network architectures,
or even more training epochs, but this again points to the
unreliability of empirical privacy checks.

Related Work
Conventional privacy-preserving techniques anonymize the
sensitive attributes of structured, low-dimensional and static
datasets, such as k-anonymity (Sweeney 2002) and l-
diversity (Machanavajjhala et al. 2007). Differential pri-
vacy (Dwork 2008) was proposed as a more formal pri-
vacy guarantee and can be applied to continuous and high-
dimensional attributes. However, these approaches provide
guarantees only when the relationship between sensitive at-
tributes and data samples can be precisely characterized.

For applications with high-dimensional data, non-
sensitive and sensitive attributes intertwine in distributions
without a relation model that can be precisely extracted.
Hence, empirical and task-dependent privacy checks are
used to provide a holistic measure of privacy. Recent work
leverages adversarial networks to sanitize input images and
adopts similar DL-based discriminators for privacy exami-
nation (Edwards and Storkey 2016; Raval, Machanavajjhala,
and Cox 2017; Pittaluga, Koppal, and Chakrabarti 2019;
Chen, Konrad, and Ishwar 2018; Wu et al. 2018; Tseng
and Wu 2020; Feutry, Piantanida, and Duhamel 2020; Max-
imov, Elezi, and Leal-Taixé 2020; Xiong et al. 2019). These
works employ adversarial training to jointly optimize both
privacy and utility objectives. Edwards and Storkey (2016)
and Raval, Machanavajjhala, and Cox (2017) perform sim-
ple sanitizing tasks such as removing the QR code from
a CIFAR-10 image, or removing the text in a face image,
where the sensitive attributes in these cases are artificial and
implicit to learn. Pittaluga, Koppal, and Chakrabarti (2019)
learn the privacy preserving encodings via a similar ap-
proach but without requiring the sanitized output to be real-
istic looking. Similarly, Wu et al. aim to generate degraded
versions of the input image to sanitize sensitive attributes.
The idea of adversarial learning was introduced by Schmid-
huber (1992), and motivated GANs as proposed by Good-
fellow et al. (2014).

Conclusion
Privacy leakage of sanitized images produced by privacy-
preserving GANs (PP-GANs) is usually measured empiri-
cally using DL-based privacy check discriminators. To illus-
trate the potential shortcomings of such checks, we produced
an adversarial PP-GAN that appeared to remove sensitive at-
tributes while maintaining the utility of the sanitized data for
a given application. While our adversarial PP-GAN passed
all privacy checks, it actually hid secret data pertaining to the
sensitive attributes, even allowing for reconstruction of the
original private image. Our experimental results highlighted
the insufficiency of existing DL-based privacy checks, and
potential risks of using untrusted third-party PP-GAN tools.
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Ethical Impact
Our work critiques empirical privacy check metrics of-
ten used in privacy-preserving generative adversarial net-
works (PP-GANs). Given increasing privacy concerns with
data sharing, we believe that our work provides timely in-
sights on the implications of such approaches to privacy and
will hopefully encourage more work on the rigor of pri-
vacy checks. Our work describes a technical approach that
could allow an adversary to prepare and release an adver-
sarial PP-GAN, although given that PP-GANs are not yet in
widespread general use, we expect the negative impact to be
minimal.
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