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Abstract

Hate speech is a challenging issue plaguing the online so-
cial media. While better models for hate speech detection are
continuously being developed, there is little research on the
bias and interpretability aspects of hate speech. In this paper,
we introduce HateXplain, the first benchmark hate speech
dataset covering multiple aspects of the issue. Each post in
our dataset is annotated from three different perspectives: the
basic, commonly used 3-class classification (i.e., hate, offen-
sive or normal), the target community (i.e., the community
that has been the victim of hate speech/offensive speech in
the post), and the rationales, i.e., the portions of the post on
which their labelling decision (as hate, offensive or normal)
is based. We utilize existing state-of-the-art models and ob-
serve that even models that perform very well in classification
do not score high on explainability metrics like model plau-
sibility and faithfulness. We also observe that models, which
utilize the human rationales for training, perform better in re-
ducing unintended bias towards target communities. We have
made our code and dataset public1 for other researchers2.

Introduction
The increase in online hate speech is a major cultural
threat, as it already resulted in crime against minorities, see
e.g. (Williams et al. 2020). To tackle this issue, there has
been a rising interest in hate speech detection to expose
and regulate this phenomenon. Several hate speech datasets
(Ousidhoum et al. 2019; Qian et al. 2019b; de Gibert et al.
2018; Sanguinetti et al. 2018), models (Zhang, Robinson,
and Tepper 2018; Mishra et al. 2018; Qian et al. 2018b,a),
and shared tasks (Basile et al. 2019; Bosco et al. 2018) have
been made available in the recent years by the community,
towards the development of automatic hate speech detection.

While many models have claimed to achieve state-of-
the-art performance on some datasets, they fail to gener-
alize (Arango, Pérez, and Poblete 2019; Gröndahl et al.
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2018). The models may classify comments that refer to cer-
tain commonly-attacked identities (e.g., gay, black, muslim)
as toxic without the comment having any intention of be-
ing toxic (Dixon et al. 2018; Borkan et al. 2019). A large
prior on certain trigger vocabulary leads to biased predic-
tions that may discriminate against particular groups who
are already the target of such abuse (Sap et al. 2019; David-
son, Bhattacharya, and Weber 2019). Another issue with the
current methods is the lack of explanation about the deci-
sions made. With hate speech detection models becoming
increasingly complex, it is getting difficult to explain their
decisions (Goodfellow, Bengio, and Courville 2016). Laws
such as General Data Protection Regulation (GDPR (Coun-
cil 2016)) in Europe have recently established a “right to ex-
planation”. This calls for a shift in perspective from perfor-
mance based models to interpretable models. In our work,
we approach model explainability by learning the target
classification and the reasons for the human decision jointly,
and also to their mutual improvement.

We therefore have compiled a dataset that covers mul-
tiple aspects of hate speech. We collect posts from Twit-
ter3 and Gab4, and ask Amazon Mechanical Turk (MTurk)
workers to annotate these posts to cover three facets. In ad-
dition to classifying each post into hate, offensive, or nor-
mal speech, annotators are asked to select the target com-
munities mentioned in the post. Subsequently, the annota-
tors are asked to highlight parts of the text that could jus-
tify their classification decision5. The notion of justification,
here modeled as ‘human attention’, is very broad with many
possible realizations (Lipton 2018; Doshi-Velez 2017). In
this paper, we specifically focus on using rationales, i.e.,
snippets of text from a source text that support a particular
categorization. Such rationales have been used in common-
sense explanations (Rajani et al. 2019), e-SNLI (Camburu
et al. 2018) and several other tasks (DeYoung et al. 2020). If
these rationales are good reasons for decisions, then mod-
els guided towards these in training could be made more
human-decision-taking-like.

Consider the examples in Table 1. The first row shows

3https://twitter.com/
4https://gab.com/
5In case the post is classified as normal, the annotators does not

need to highlight any span.
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Model Text Label

Human Annotator The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them HS

CNN-GRU The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them HS
BiRNN The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them HS
BiRNN-Attn The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them HS
BiRNN-HateXplain The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them HS
BERT The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them OF
BERT-HateXplain The jews are again using holohoax as an excuse to spread their agenda . Hilter should have eradicated them OF

Table 1: Example of the rationales predicted by different models compared to human annotators. The bold part marks tokens
that the human annotator and model found important for the prediction. The underlined part marks tokens which the model
found important, but the human annotators did not.

the tokens (‘rationales’) that were selected by human an-
notators which they believe are important for the classifi-
cation. The next six rows show the important tokens (using
LIME (Ribeiro, Singh, and Guestrin 2016)), which helped
various models in the classification. We observe that even
when the model is making the correct prediction (hate
speech – HS in this case), the reason (‘rationales’) for this
varies across models. In case of BERT, we observe that it at-
tends to several of the tokens that human annotators deemed
important, but assigns the wrong label (offensive speech -
OF).

In summary, we introduce HateXplain, the first bench-
mark dataset for hate speech with word and phrase level
span annotations that capture human rationales for the label-
ing. Using MTurk, we collect a large dataset of around 20K
posts and annotate them to cover three aspects of each post.
We use several models on this dataset and observe that while
they show a good model performance, they do not fare well
in terms of model interpretability/explainability. We also ob-
serve that providing these rationales as input during training
helps in improving a model’s performance and reducing the
unintended bias. We believe that this dataset would serve as
a fundamental source for the future hate speech research.

Related Works
Hate Speech
The public expression of hate speech affects the deval-
uation of minority members (Greenberg and Pyszczynski
1985) and such frequent and repetitive exposure to hate
speech could increase an individual’s outgroup prejudice
(Soral, Bilewicz, and Winiewski 2018). Real world violent
events could also lead to increased hate speech in online
space (Olteanu et al. 2018). To tackle this, various methods
have been proposed for hate speech detection (Burnap and
Williams 2016; Ribeiro et al. 2018; Zhang, Robinson, and
Tepper 2018; Qian et al. 2018a). The recent interest in hate
speech research has led to the release of datasets in multiple
languages (Ousidhoum et al. 2019; Sanguinetti et al. 2018)
along with different computational approaches to combat
online hate (Qian et al. 2019a; Mathew et al. 2019b; Aluru
et al. 2020).

A recurrent issue with the majority of previous research
is that many of them tend to conflate hate speech and abu-

sive/offensive6 language (Davidson et al. 2017). Some of the
works have combined offensive and hate language under a
single concept, while very few works, such as (Davidson
et al. 2017; Founta et al. 2018) and Van Huynh et al. (2019)
have attempted to separate offensive from hate speech. We
argue that this, although subjective, is an important aspect as
there are lots of messages that are offensive but do not qual-
ify as hate speech. For example, consider the word ‘nigga’.
The word is used everyday in online language by the African
American community (Vigna et al. 2017). Similarly, words
like hoe and bitch are used commonly in rap lyrics. Such
language is prevalent on social media (Wang et al. 2014)
and any hate speech detection system should include these
for the system to be usable. To this end, we have assumed
that a given text can belong to one of the three classes: hate,
offensive, normal. We have adopted the classes based on the
work of Davidson et al. (2017). Table 2 provides a compari-
son between some hate speech datasets.

Explainability/Interpretability

Zaidan, Eisner, and Piatko (2007) introduced the concept of
using rationales, in which human annotators would high-
light a span of text that could support their labeling decision.
The authors utilized these enriched rationale annotation on
a smaller set of training data, which helped to improve sen-
timent classification. Yessenalina, Choi, and Cardie (2010)
built on this work and developed methods that automatically
generate rationales. Lei, Barzilay, and Jaakkola (2016) also
proposed an encoder-generator framework, which provides
quality rationales without any annotations.

In our paper, we utilize the concept of rationales and pro-
vide the first benchmark hate speech dataset with human
level explanations. We have made our model and dataset
public1 for other researchers.

Dataset Collection And Annotation Strategies
In this section, we provide the annotation strategies we have
followed, the dataset selection approaches used, and the
statistics of the collected dataset.

6We have used the terms offensive and abusive interchangeably
in our paper as they are arguably very similar (Founta et al. 2018).
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Dataset Labels Total Size Language Target Labels? Rationales?

Waseem and Hovy (2016) racist, sexist, normal 16,914 English × ×
Davidson et al. (2017) Hate Speech, Offensive, Normal 24,802 English × ×
Founta et al. (2018) Abusive, Hateful, Normal, Spam 80,000 English × ×
Ousidhoum et al. (2019) Labels for five different aspects 13,000 English, French, Arabic X ×
HateXplain (Ours) Hate Speech, Offensive, Normal 20,148 English X X

Table 2: Comparison of different hate speech datasets.

Dataset Sampling
We collect our dataset from sources where previous stud-
ies on hate speech have been conducted: Twitter (Davidson
et al. 2017; Fortuna and Nunes 2018) and Gab (Lima et al.
2018; Mathew et al. 2020; Zannettou et al. 2018). Follow-
ing the existing literature, we build a corpus of posts (tweets
and gab posts) using lexicons. We combined the lexicon
set provided by Davidson et al. (2017), Ousidhoum et al.
(2019), and Mathew et al. (2019a) to generate a single lexi-
con. For Twitter, we filter the tweets from the 1% randomly
collected tweets in the time period Jan-2019 to Jun-2020. In
case of Gab, we use the dataset provided by Mathew et al.
(2019a). We do not consider reposts and remove duplicates.
We also ensure that the posts do not contain links, pictures,
or videos as they indicate additional information that might
not be available to the annotators. However, we do not ex-
clude the emojis from the text as they might carry important
information for the hate and offensive speech labeling task.
The posts were anonymized by replacing the usernames with
<user>token.

Annotation Procedure
We use Amazon Mechanical Turk (MTurk) workers for our
annotation task. Each post in our dataset contains three types
of annotations. First, whether the text is a hate speech, of-
fensive speech, or normal. Second, the target communities
in the text. Third, if the text is considered as hate speech, or
offensive by majority of the annotators, we further ask the
annotators to annotate parts of the text, which are words or
phrases that could be a potential reason for the given anno-
tation. These additional span annotations allow us to further
explore how hate or offensive speech manifests itself.

Target Group Annotation The primary goal of the an-
notation task is to determine whether a given text is hate-
ful, offensive, or neither of the two, i.e. normal. As noted
above, we also get span annotations as reasons for the label
assigned to a post (hateful or offensive). To further enrich
the dataset, we ask the workers to decide the groups that the
hate/offensive speech is targeting. We included target groups
based on Race, Religion, Gender, Sexual Orientation etc.

Annotation Instructions And Design Of The Interface
Before starting the annotation task, workers are explicitly
warned that the annotation task displays some hateful or
offensive content. We prepare instructions for workers that
clearly explain the goal of the annotation task, how to anno-
tate spans and also include a definition for each category. We
provided multiple examples with classification, target com-

Twitter Gab Total
Hateful 708 5,227 5,935
Offensive 2,328 3,152 5,480
Normal 5,770 2,044 7,814
Undecided 249 670 919
Total 9,055 11,093 20,148

Table 3: Dataset details. “Undecided” refers to the cases
where all the three annotators chose a different class.

munity and span annotations to help the annotators under-
stand the task. To further ensure high quality dataset, we use
built-in MTurk qualification requirements, namely the HIT
Approval Rate (95%) for all Requesters’ HITs and the Num-
ber of HITs Approved (5,000) requirements.

Dataset Creation Steps
For the dataset creation, we first conducted a pilot annotation
study followed by the main annotation task.
Pilot annotation: In the pilot task, each annotator was
provided with 20 posts and they were required to do the
hate/offensive speech classification as well as identify the
target community (if any). In order to have a clear under-
standing of the task, they were provided with multiple exam-
ples along with explanations for the labelling process. The
main purpose of the pilot task was to shortlist those anno-
tators who were able to do the classification accurately. We
also collected feedback from annotators to improve the main
annotation task. A total of 621 annotators took part in the pi-
lot task. Out of these, 253 were selected for the main task.
Main annotation: After the pilot annotation, once we had
ascertained the quality of the annotators, we started with
the main annotation task. In each round, we would select
a batch of around 200 posts. Each post was annotated by
three annotators, then majority voting was applied to decide
the final label. The final dataset is composed of 9,055 posts
from Twitter and 11,093 posts from Gab. Table 3 provides
further details about the dataset collected. Table 4 shows
samples of our dataset. The Krippendorff’s α for the inter-
annotator agreement is 0.46 which is much higher than other
hate speech datasets (Vigna et al. 2017; Ousidhoum et al.
2019).
Class labels: The class label (hateful, offensive, normal) of
a post was decided based on majority voting. We found 919
cases where all the three annotators chose a different class.
We did not consider these posts for our analysis.

To decide the target community of a post, we rely on ma-
jority voting. We consider that a target community is present
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Figure 1: Ground truth attention.

in the post, if at least two out of the three annotators have
selected the target community. We also add a filter that the
community should be present in at least 100 posts. Based
on this criteria, our dataset had the following ten communi-
ties: African, Islam, Jewish, LGBTQ, Women, Refugee, Arab,
Caucasian, Hispanic, Asian. The target community infor-
mation would allow researchers to delve into issues related
to bias in hate speech (Davidson, Bhattacharya, and Weber
2019). In our dataset, the top three communities that are tar-
gets of hate speech are the African, Islam, and Jewish com-
munity. In case of offensive speech, the top three targets
are Women, Africans, and LGBTQ. These observations are
in agreement with previous research (Silva et al. 2016).

For the rationales’ annotation, each post that is labelled
as hateful or offensive was further provided to the annota-
tors7 to highlight the rationales that could justify the final
class. Each post had rationale explanations provided by 2-3
annotators. We observe that the average number of tokens
highlighted per post is 5.48 for offensive speech, and 5.47
for hate speech. Average token per post in the whole dataset
is 23.42. The top three content words in the hate speech ra-
tionales are nigger, kike, and moslems, which are found in
30.02% of all the hateful posts. The top three content words
for the offensive highlights are retarded, bitch, and white,
which are found in 47.36% of all the offensive posts.
Ground truth attention: In order to generate the ground
truth attention for the post with hate speech/offensive label,
we first convert each rationale into an attention vector. This
is a Boolean vector with length equal to the number of to-
kens in the sentence. The tokens in the rationale are indi-
cated by a value of 1 in the attention vector. Now we take
the average of the these attention vectors to represent a com-
mon ground truth attention vector for each post. The atten-
tion vectors from the attention based models usually have
their sum of elements equal to 1. We normalize this com-
mon attention vector through a softmax function to generate
the ground truth attention. One issue with the ground truth
attention vector could be that the difference between the val-
ues of rationale and non-rationale tokens could be low. To
handle this, we make use of the temperature parameter (τ )
in the softmax function. This allows us to make the proba-
bility distribution concentrate on the rationales. We tune this

7We tried to get the original annotator to highlight, however
this was not always possible.

Text Dad should have told the muzrat whore
to fuck off, and went in anyway

Label Hate
Targets Islam

Text A nigress too dumb to fuck has a scant
chance of understanding anything beyond
the size of a dick

Label Hate
Targets Women, African

Text Twitter is full of tween dikes who think
they’re superior because of “muh oppression.”
News flash: No one gives a shit.

Label Offensive
Targets LGBTQ

Table 4: Examples from our dataset. The bold portion of the
text represents the annotator’s rationale.

parameter using the validation set. Finally, if the label of the
post is normal, we ignore the attention vectors and replace
each element in the ground truth attention with 1/(sentence
length) to represent uniform distribution. We illustrate this
computation in Figure 1.

Metrics For Evaluation
Performance Based Metrics
Following the standard practices, we report accuracy,
macro F1-score, and AUROC score. These metrics would
be able to evaluate the classifier performance in distinguish-
ing among the three classes, i.e., hate speech, offensive
speech, and normal.

Bias Based Metrics
The hate speech detection models could make biased pre-
dictions for particular groups who are already the target of
such abuse (Sap et al. 2019; Davidson, Bhattacharya, and
Weber 2019). For example, the sentence “I love my niggas.”
might be classified as hateful/offensive because of the asso-
ciation of the word niggas with the black community. These
unintended identity-based bias could have negative impact
on the target community. To measure such unintended model
bias, we rely on the AUC based metrics developed by
Borkan et al. (2019). These include Subgroup AUC, Back-
ground Positive Subgroup Negative (BPSN) AUC, Back-
ground Negative Subgroup Positive (BNSP) AUC, Gener-
alized Mean of Bias AUCs. The task here is to classify the
post as toxic (hate speech, offensive) or not (normal). Here,
the models will be evaluated on the grounds of how much
they are able to reduce the unintended bias towards a target
community (Borkan et al. 2019). We restrict the evaluation
to the test set only. By having this restriction, we are able to
evaluate models in terms of bias reduction. Below, we briefly
describe each of the metrics.
Subgroup AUC: Here, we select toxic and normal posts
from the test set that mention the community under con-
sideration. The ROC-AUC score of this set will provide us
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with the Subgroup AUC for a community. This metric mea-
sures the model’s ability to separate the toxic and normal
comments in the context of the community (e.g., Asians,
LGBTQ etc.). A higher value means that the model is do-
ing a good job at distinguishing the toxic and normal posts
specific to the community.
BPSN (Background Positive, Subgroup Negative) AUC:
Here, we select normal posts that mention the community
and toxic posts that do not mention the community, from the
test set. The ROC-AUC score of this set will provide us with
the BPSN AUC for a community. This metric measures the
false-positive rates of the model with respect to a commu-
nity. A higher value means that a model is less likely to con-
fuse between the normal post that mentions the community
with a toxic post that does not.
BNSP (Background Negative, Subgroup Positive) AUC:
Here, we select toxic posts that mention the community and
normal posts that do not mention the community, from the
test set. The ROC-AUC score for this set will provide us
with the BNSP AUC for a community. The metric measures
the false-negative rates of the model with respect to a com-
munity. A higher value means that the model is less likely to
confuse between a toxic post that mentions the community
with a normal post without one.
GMB (Generalized Mean of Bias) AUC: This metric was
introduced by the Google Conversation AI Team as part of
their Kaggle competition8. This metric combines the per-
identify Bias AUCs into one overall measure as Mp (ms) =(

1
N

∑N
s=1m

p
s

) 1
p

where,Mp = the pth power-mean function,
ms = the bias metric m calculated for subgroup s and N =
number of identity subgroups (10). We use p = −5 as was
also done in the competition.
We report the following three metrics for our dataset.
- GMB-Subgroup-AUC: GMB AUC with Subgroup AUC

as the bias metric.
- GMB-BPSN-AUC: GMB AUC with BPSN AUC as the

bias metric.
- GMB-BNSP-AUC: GMB AUC with BNSP AUC as the

bias metric.

Explainability Based Metrics
We follow the framework in the ERASER benchmark
by DeYoung et al. (2020) to measure the explainability as-
pect of a model. We measure this using plausibility and
faithfulness. Plausibility refers to how convincing the inter-
pretation is to humans, while faithfulness refers to how accu-
rately it reflects the true reasoning process of the model (Ja-
covi and Goldberg 2020).

For completeness, we explain the metrics briefly below.
Plausibility To measure the plausibility, we consider metrics
for both discrete and soft selection. We report the IOU F1-
Score and token F1-Score metric for the discrete case, and
the AUPRC score for soft token selection (DeYoung et al.
2020).

8https://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/overview/evaluation

Intersection-Over-Union (IOU) permits credit assignment
for partial matches. DeYoung et al. (2020) defines IOU on a
token level: for two spans, it is the size of the overlap of the
tokens they cover divided by the size of their union. A pre-
diction is considered as a match if the overlap with any of the
ground truth rationales is more than 0.5. We use these partial
matches to calculate an F1-score (IOU F1). We also mea-
sure token-level precision and recall, and use these to derive
token-level F1 scores (token F1). To measure the plausibil-
ity for soft token scoring, we also report the Area Under the
Precision-Recall curve (AUPRC) constructed by sweeping a
threshold over the token scores.
Faithfulness To measure the faithfulness, we report two
metrics: comprehensiveness and sufficiency (DeYoung et al.
2020).
- Comprehensiveness: To measure comprehensiveness,

we create a contrast example x̃i, for each post xi, where
x̃i is calculated by removing the predicted rationales ri9

from xi. Let m(xi)j be the original prediction proba-
bility provided by a model m for the predicted class j.
Then we define m(xi\ri)j as the predicted probability
of x̃i (= xi\ri) by the model m for the class j. We
would expect the model prediction to be lower on re-
moving the rationales. We can measure this as follows –
comprehensiveness = m(xi)j−m(xi\ri)j . A high value
of comprehensiveness implies that the rationales were in-
fluential in the prediction.

- Sufficiency measures the degree to which extracted ratio-
nales are adequate for a model to make a prediction. We
can measure this as follows – sufficiency = m(xi)j −
m(ri)j .

Model architecture

Sentence

GT
attention

Predicted
attention

Possible with model
having attention as

output

Predicted 
labels

GT
labels

Figure 2: Representation of the general model architecture
showing how the attention of the model is trained using the
ground truth (GT) attention. λ controls how much effect the
attention loss has on the total loss.

9We select the top 5 tokens as the rationales. The top 5 is se-
lected as it is the avg. length of the annotation span in the dataset.
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Model [Token Method] Performance Bias Explainability
Plausibility Faithfulness

Acc.↑ Macro F1↑ AUROC↑ GMB-Sub.↑ GMB-BPSN↑ GMB-BNSP↑ IOU F1↑ Token F1↑ AUPRC↑ Comp.↑ Suff.↓
CNN-GRU [LIME] 0.627 0.606 0.793 0.654 0.623 0.659 0.167 0.385 0.648 0.316 -0.082
BiRNN [LIME] 0.595 0.575 0.767 0.640 0.604 0.671 0.162 0.361 0.605 0.421 -0.051
BiRNN-Attn [Attn] 0.621 0.614 0.795 0.653 0.662 0.668 0.167 0.369 0.643 0.278 0.001
BiRNN-Attn [LIME] 0.621 0.614 0.795 0.653 0.662 0.668 0.162 0.386 0.650 0.308 -0.075
BiRNN-HateXplain [Attn] 0.629 0.629 0.805 0.691 0.636 0.674 0.222 0.506 0.841 0.281 0.039
BiRNN-HateXplain [LIME] 0.629 0.629 0.805 0.691 0.636 0.674 0.174 0.407 0.685 0.343 -0.075
BERT [Attn] 0.690 0.674 0.843 0.762 0.709 0.757 0.130 0.497 0.778 0.447 0.057
BERT [LIME] 0.690 0.674 0.843 0.762 0.709 0.757 0.118 0.468 0.747 0.436 0.008
BERT-HateXplain [Attn] 0.698 0.687 0.851 0.807 0.745 0.763 0.120 0.411 0.626 0.424 0.160
BERT-HateXplain [LIME] 0.698 0.687 0.851 0.807 0.745 0.763 0.112 0.452 0.722 0.500 0.004

Table 5: Model performance results. To select the tokens for explainability calculation, we used attention and LIME methods.

Model Details
Each model has two versions, one where the models are
trained using the ground truth class labels only (i.e., hate
speech, offensive speech, and normal) and the other, where
the models are trained using the ground truth attention and
class labels, as shown in Figure 2. For training using the
ground truth attention, the model needs to output some form
of vector representing attention for each token according
to the model, hence, the second version is not feasible for
BiRNN and CNN-GRU models10.

CNN-GRU Zhang, Robinson, and Tepper (2018) used
CNN-GRU to achieve state-of-the-art for multiple hate
speech datasets. We modify the original architecture to in-
clude convolution 1D filters of window sizes 2, 3, 4 with
each size having 100 filters. For the RNN part, we use GRU
layer and finally max-pool the output representation from
the hidden layers of the GRU architecture. This hidden layer
is passed through a fully connected layer to finally output
the prediction logits.

BiRNN For the BiRNN (Schuster and Paliwal 1997)
model, we pass the tokens in the form of embeddings to a
sequential model11. The last hidden state is passed through
2 fully connected layers. The output after that is used as the
prediction logits. We use dropout layers after the embedding
layer and before both the fully connected layers to regularise
the trained model.

BiRNN-Attention This model is identical to the BiRNN
model but includes an attention layer (Liu and Lane 2016)
after the sequential layer. This attention layer outputs an at-
tention vector based on a context vector which is analogous
to asking “which is the most important word?”. Weights
from the attention vector are multiplied with the output hid-
den units from the sequential layer and added to present a
final representation of the sentence. This representation is
passed through two fully connected layers as in the BiRNN
model. Further to train the attention layer outputs, we com-
pute cross entropy loss between the attention layer output
and the ground truth attention (cf. Figure 1 for its computa-
tion) as shown in Figure 2.

10The limitation is due to the lack of an attention mechanism
11We experiment with LSTM and GRU.

BERT BERT (Devlin et al. 2019)12 is a stack of trans-
former encoder layers with 12 “attention heads”, i.e., fully
connected neural networks augmented with a self attention
mechanism. In order to fine-tune BERT, we add a fully con-
nected layer with the output corresponding to the CLS token
in the input. This CLS token output usually holds the repre-
sentation of the sentence. Next, to add attention supervision,
we try to match the attention values corresponding to the
CLS token in the final layer to the ground truth attention, so
that when the final weighted representation of CLS is gen-
erated, it would give attention to words as per the ground
truth attention vector. This is calculated using a cross en-
tropy between the attention values and the ground truth at-
tention vector as shown in Figure 2.

Hyper-parameter Tuning

All the methods are compared using the same
train:development:test split of 8:1:1. We perform strat-
ified split on the dataset to maintain class balance. All the
results are reported on the test set and the development set
is used for hyper-parameter tuning. We use the common
crawl13 pre-trained GloVe embeddings (Pennington, Socher,
and Manning 2014) to initialize the word embeddings for
the non-BERT models. In our models, we set the token
length to 128 for faster processing of the query14. We
use Adam (Kingma and Ba 2015) optimizer and find the
learning rate to 0.001 for the non-BERT models and 2e-5 for
BERT models using the development set. The RNN models
prefer LSTM as the sequential layer with hidden layer size
of 64 for BiRNN with attention and 128 for BiRNN. We use
dropouts at different levels of the model. The regulariser λ
controls how much effect the attention loss has on the total
loss as in Figure 2. Optimum performance occurs with λ
being set to 100 for BiRNN with attention and BERT with
attention in the supervised setting15.

12We use the bert-base-uncased model having 12-layer, 768-
hidden, 12-heads, 110M parameters.

13840B tokens, 2.2M vocab, cased, 300d vectors.
14Almost all the posts consist of less than 128 tokens in the data.
15Please note that our selection of the best hyper-parameter was

based on the performance, which is in lines with what is suggested
in the literature. This dataset gives the flexibility to choose best
parameters based on plausibility and/or faithfulness, instead.
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Figure 3: Community-wise results for each of the bias metrics.

Results
We report the main results obtained in Table 5.
Performance: We observe that models utilizing the hu-
man rationales as part of the training (BiRNN-HateXplain
[LIME & Attn], BERT-HateXplain [LIME & Attn]16) are
able to perform slightly better in terms of the performance
metrics. BiRNN-HateXplain [LIME & Attn] has improved
score for all plausibitliy metrics and comprehensiveness as
compared to BiRNN-Attn [LIME & Attn]. In case of BERT-
HateXplain [LIME], the faithfulness scores have improved
as compared to other BERT models. However, the plausibil-
ity scores have decreased.
Bias: Similar to performance, models that utilize the human
rationales as part of the training are able to perform better in
reducing the unintended model bias for all the bias metrics.
We observe that presence of community terms within the
rationales is effective in reducing the unintended bias. We
also looked at the model bias for each individual commu-
nity in Figure 3. Figure 3a reports the community wise sub-
group AUCROC. We observe that while the GMB-Subgroup
metric reports ∼0.8 AUROC, the score for individual com-
munity has large variations. Target communities like Asians
have scores∼0.7, even for the best model. Communities like
Hispanic seem to be biased toward having more false pos-
itives. Models like BERT-HateXplain seem to be able to
handle this bias much better than other models. Future re-
search on hate speech, should consider the impact of the
model performance on individual communities to have a
clear understanding on the impact.
Explainability: We observe that models such as BERT-
HateXplain [LIME & Attn], which attain the best scores in
terms of performance metrics and bias, do not perform well
in terms of plausibility explainability metrics. In fact, BERT-
HateXplain [Attn] has the worst score for sufficiency
as compared to other models. BERT-HateXplain [LIME]

16<model>-HateXplain denotes the models where we use su-
pervised attention using ground truth attention vector.

seems to be the best model for comprehensiveness metric.
For plausibility metrics, we observe BiRNN-HateXplain
[Attn] to have the best scores. For sufficiency, CNN-GRU
seems to be doing the best. For the token method, LIME
seems to be generating more faithful results as compared
to attention. These are in agreement with DeYoung et al.
(2020). Overall, we observe that a model’s performance met-
ric alone is not enough. Models with slightly lower perfor-
mance, but much higher scores for plausibility and faithful-
ness might be preferred depending on the task at hand. The
HateXplain dataset could be a valuable tool to analyze and
develop models that provide more explainable results.
Variations with λ: We measure the effect of λ on model per-
formance (macro F1 and AUROC) and explainability (token
F1, AUPRC, comp., and suff.). We experiment with BiRNN-
HateXplain [Attn] and BERT-HateXplain [Attn]. Increas-
ing the value of λ improves the model performance, plaus-
ability, and sufficienty while degrading comprehensiveness.

Limitations and Conclusion
Our work has several limitations. First is the lack of external
context. In our current models, we have not considered any
external context such as profile bio, user gender, history of
posts etc., which might be helpful in the classification task.
Another issue is the focus on English language and lack of
multilingual hate speech.

In this paper, we have introduced HateXplain, a new
benchmark dataset1 for hate speech detection. The dataset
consists of 20K posts from Gab and Twitter. Each data point
is annotated with one of the hate/offensive/normal labels,
target communities mentioned, and snippets (rationales) of
the text marked by the annotators who support the label. We
test several state-of-the-art models on this dataset and per-
form evaluation on several aspects of the hate speech detec-
tion. Models that perform very well in classification cannot
always provide plausible and faithful rationales for their de-
cisions.
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