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Abstract

With the explosive growth of e-payment industry, online
transaction fraud has become one of the biggest challenges
for the business. The historical behavior information of users
provides rich information for digging into the users’ fraud
risk. While considerable efforts have been made in this direc-
tion, a long-standing challenge is how to effectively exploit
user’s behavioral information and provide explainable pre-
diction results. In fact, the value variations of same field from
different events and the interactions of different fields within
one event have proven to be strong indicators of fraudulent
behaviors. In this paper, we propose the Dual Importance-
aware Factorization Machines (DIFM), which exploits the
inter- and intra-event information among users’ behavior se-
quence from dual perspectives, i.e., field value variations and
field interactions simultaneously for fraud detection. The pro-
posed model is deployed in Alipay’s risk management sys-
tem, which provides real-time fraud detection service for e-
commerce platforms. Experimental results on industrial data
under various scenarios in the platform clearly demonstrate
that our model achieves significant improvements compared
with various state-of-the-art baseline models. Moreover, the
DIFM could also give an insight into the explanation of the
prediction results from dual perspectives.

Introduction
With the rapid development of e-commerce and e-payment,
the problem of online transaction fraud has become increas-
ingly prominent (Cao et al. 2019). As an international Fin-
tech company, Alipay provides e-payment service for many
e-commerce platforms, on which millions of transactions
occurred each day. A very small portion of fraudulent trans-
actions could easily lead to huge financial loss and introduce
great security risk to our business.

Therefore, detecting fraudulent risk in real-time, has be-
come a key factor in determining the security and success
of e-payment business. Recently, considerable efforts have
shifted from rule-based expert system (Cohen 1995; Brause,
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Figure 1: A typical fraud detection task which exploits the
user’s historical operation events information to determine
the fraudulent risk of target payment event.

Langsdorf, and Hepp 1999; Rosset et al. 1999; Baulier
et al. 2000; Stefano and Gisella 2001; Pathak, Vidyarthi, and
Summers 2005) to neural network-based models (Fu et al.
2016; Wang et al. 2017b; Zhang, Zheng, and Min 2018; Ju-
rgovsky et al. 2018; Cao et al. 2019; Liang et al. 2019; Xi
et al. 2020; Zhu et al. 2020) for fraud detection tasks. The
historical behavior events (activities) of users provide rich
information for digging into the users’ fraud risk as shown
in Figure 1. However, due to the limitation of model struc-
tures, it is difficult for the above methods to exploit the inter-
nal field information thoroughly among events (e.g., the field
value variations among the historical events or field interac-
tions inside each event) or to provide explainable prediction
results, which is foundational key in fraud detection tasks.

In this paper, we propose the Dual Importance-aware
Factorization Machines (DIFM) to more efficiently take ad-
vantage of internal field information among events. It could
not only improve the performance of fraud detection but also
provide explainable prediction results. DIFM captures inter-
nal field information from dual perspectives: 1) The Field
Value Variations Perspective captures the value variations
of each field between any two events, and the corresponding
Field Importance-aware module perceives the importance
of different field value variations. 2) The Field Interac-
tions Perspective models the interactions between all fields
within each event, and the corresponding Event Importance-
aware module perceives the importance of different histor-
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ical events. Besides, the “wide” layer of DIFM can help
to assess the fraudulent related risk-level of each field and
therefore work as blacklist/whitelist to screen out the fraud-
ulent/good users.

To summarize, the contributions are listed as follows:
• DIFM effectively and sufficiently exploits both inter- and

intra-event information from the field value variations per-
spective and field interactions perspective simultaneously.

• DIFM perceives the importance of values in field-level
and event-level from dual perspectives simultaneously,
which could provide explainable prediction results.

• Experimental results on industrial data from different
trading scenarios clearly demonstrate that the proposed
DIFM model obtains a remarkable improvement compar-
ing to existing state-of-the-art approaches.

Related Work
In this section, we present the related work in two-fold: (1)
feature interactions and sequence prediction, (2) fraud de-
tection.

Simply using raw features could rarely yield optimal re-
sults in prediction tasks, therefore more information need
to be mined. One way is to learn feature interactions from
raw data to generate efficient feature representations. Data
scientists made a lot of effort to derive efficient feature in-
teractions from raw data (also known as feature engineer-
ing) to obtain better prediction performance (Cheng et al.
2016; Lian et al. 2017). Instead of generating feature inter-
actions manually, a solution (Wang et al. 2017a) has been
proposed to learn feature interactions automatically from the
raw data. Factorization Machine (FM) (Rendle 2010) is a
widely used method to model second-order feature interac-
tions automatically via the inner product of raw embedding
vectors. Other efforts have also been made to combine the
advantages of FM on modeling second-order feature interac-
tions and neural network on modeling higher-order feature
interactions (Zhang, Du, and Wang 2016; Qu et al. 2016;
He and Chua 2017; Xiao et al. 2017; Guo et al. 2017; Lian
et al. 2018). However, in the case of sequence prediction,
simply considering the interaction among fields is not suffi-
cient, since such methods only capture the interaction among
features regardless of the event they belong to, which results
in ignoring the variation of value along the temporal dimen-
sion. They do not consider field-in-event-relations and field-
between-event-relations, which we believe is of fundamen-
tal importance for fraud detection tasks. Other methods have
also attempted to take the user’s historical event information
into consideration (Hidasi et al. 2016; Quadrana et al. 2017;
Tang and Wang 2018; Kang and McAuley 2018; Beutel et al.
2018; Ma, Kang, and Liu 2019; Rakkappan and Rajan 2019;
Chen et al. 2019; Zhou et al. 2019; Tang et al. 2019). Nev-
ertheless, most of these studies mainly focused on the event
sequence but ignored the intra-field field information of his-
torical events.

Fraud detection is one of the most significant applications
in e-payment business, early researchers mainly focused on
rule-based expert system (Cohen 1995; Brause, Langsdorf,
and Hepp 1999; Rosset et al. 1999; Baulier et al. 2000;
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Figure 2: An example of operation events set E.

Stefano and Gisella 2001; Pathak, Vidyarthi, and Summers
2005). There are different types of fraud, for example, credit
card fraud (Brause, Langsdorf, and Hepp 1999), telephone
fraud (Rosset et al. 1999), insurance fraud (Stefano and
Gisella 2001) and so on. With the rapid evolution of fraud-
ster’s behavior patterns, only human-summarized rules or
expert knowledge are not sufficient to meet the demand
of today’s real-time fraud detection (Cao et al. 2019). Re-
searchers have attempted to use machine-learning based
methods (Tian et al. 2015; Tseng et al. 2015; Fu et al. 2016;
Wang et al. 2017b; Zhang, Zheng, and Min 2018; Jurgov-
sky et al. 2018; Cao et al. 2019; Liang et al. 2019) to detect
fraud. Fu et al. (2016) focused on Convolutional Neural Net-
work (CNN) for credit card fraud detection (Fu et al. 2016).
Other works utilized Recurrent Neural Networks (RNN) for
sequence-based fraud detection (Wang et al. 2017b; Jurgov-
sky et al. 2018; Zhang, Zheng, and Min 2018). Liang et
al. (2019) utilized Graph Neural Network (GNN) to target
frauds (Liang et al. 2019). However, most of these methods
suffer from the same problem: lack of explainability, which
is crucial for fraud detection tasks. In this paper, we pro-
pose DIFM model, which could not only exploit the internal
field information more thoroughly among events from dual
perspective but also give insight into the explanation of the
prediction results.

Methodology
In the following section, we first formulate the problem, then
present the details of the proposed DIFM model.

Problem Statement
A simple example of a user’s operation events E is
shown in Figure 2. Given a user’s operation events E =
[e1, e2, ..., eT ], where T is the number of the events. Each
field in a single event despicts certain operation information
with the event, e.g. IP city field or payment amount field,
and the number of fields for each event is N . Each field
could have one or more candidate values (e.g., in Figure
2, the IP field has the values of IP1, IP2, IP3 and so on).
et = [xt1, x

t
2, ..., x

t
|V |] (1 ≤ t ≤ T ) is the t-th event of the

user in E, where |V | is the number of all field values (i.e.,
the dictionary size of all fields). For categorical fields (e.g.,
the IP field), xti (1 ≤ i ≤ |V |) is 1 if et has the value in
the current categorical field, otherwise is 0. For numerical
fields (e.g., the Amount field), xti adopts the real value as
its value. Our task is to make a prediction for the current
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payment event eT according to the user’s historical opera-
tion events [e1, e2, ..., eT−1] and the available information
of the current payment event eT . The task could then be for-
mulated as Classification, Regression or Pairwise Ranking
depending on which activation/loss function they use under
real application scenarios as described in (Rendle 2010).

Factorization Machines and Importance-aware
Module
In this subsection, we first describe two basic modules
of the DIFM, which are the Factorization Machines and
Importance-aware Module, respectively.

Factorization Machines As shown in Figure 2, there are
rich features in each event which describe the event de-
tails in real application scenarios. Since most of the features
are one-hot encoding categorical features, the dimension is
usually high and the vectors are sparse. FM is an effective
method to address such high-dimension and sparse prob-
lems, and it can be seen as performing the latent relation
modeling between any two field values of the same event,
e.g., the field value variations or field interactions.

Firstly, we project each non-zero field value xi to a low
dimension dense vector representation vi. Embedding layer
is a popular solution in the neural network over various ap-
plication scenarios. It learns one embedding vector vi ∈ Rk

(1 ≤ i ≤ |V |) for each field value xi. where k is the dimen-
sion of embedding vectors. For both categorical and numer-
ical features, we rescale the look-up table embedding via
xivi as done in (He and Chua 2017). Therefore, we only
need to include the non-zero features, i.e., xi 6= 0.

Different from traditional FM, which uses inner product
to get a scalar, to preserve sufficient information, a vector
representation is generated using Hadamard product as done
in (He and Chua 2017):

FM(x) =
∑
i6=j

xivi � xjvj . (1)

Hadamard product � denotes the element-wise product
of two vectors: (vi � vj)k = vikvjk. The computing com-
plexity of the above Equation (1) isO(k|V |2), since all pair-
wise relations need to be computed. Actually, the Hadamard
product based FM can be reformulated to linear runtime
O(k|V |) (He and Chua 2017) just like the inner product
based FM (Rendle 2010):

FM(x) =
1

2

[
(
∑
i

xivi)
2 −

∑
i

(xivi)
2

]
, (2)

where v2 denotes v � v. Besides, in sparse settings, the
sums only need to be computed over the non-zero pairs xixj .
Therefore, the actual computing complexity is O(k ˆ|V |),
where ˆ|V | is the number of non-zero entries in x.

Importance-aware Module In fraud detection tasks,
fields and events often play different roles, which indicates
different importance for the detection task. For field impor-
tance, IP address changing or amount changing over a short
period tends to indicate higher risk than value-stable field,

therefore we should pay more attention to IP/amount field if
they have such pattern; for event importance, if an event has
multiple abnormal field values, the event is more important
than other normal events.

In order to perceive the relative importance of different
fields and events, we design an Importance-aware Module.
We expect the model could pay more attention to important
fields and events. Attention mechanism has been verified
to be effective in machine translation (Bahdanau, Cho, and
Bengio 2015), where the attention makes the model focus
on useful features for the current task. Inspired by the great
success of self-attention in machine translation (Vaswani
et al. 2017), we design the self-attention-like Importance-
aware Module to learn the importance of different fields
and events. The key advantage of the Importance-aware
Module is that it can perceive the importance of different
fields and events for each user. For a vector set FM =
{FM1, ...,FMm, ...} of different fields or events captured
with the FM, the importance weight is defined as scaled dot-
product:

âm =
< F1(FMm), F2(FMm) >√

k
, (3)

am =
exp(âm)∑
m exp(âm)

, (4)

and the output of the Importance-aware Module (IM ) is rep-
resented as:

IM(FM) =
∑
m

amF3(FMm), (5)

where <,> denotes the dot-product and F1, F2, and F3

represent the feed-forward networks to learn for projecting
the input vector to one new vector representation space. It
is worth noting that we find using multiple feed-forward
networks in the designed attention module is more effec-
tive than using a single feed-forward network as adopted in
(Xiao et al. 2017; Zhou et al. 2018).

Field Value Variations Perspective
In this subsection, we model the field value variations with
the above two modules.

For hacked account, it would be super-expensive to mimic
the real account owner’s complete environment information,
so field value variations (e.g., the IP changing) in different
events tends to indicate higher risk than stable field.

As mentioned above, FM can help capture the field value
variations information, and therefore we apply FM module
with our proposed model. For the n-th field fn, we calculate
the field value variations among all T events as the brown
box shown in Figure 3:

fn = FM(xn) =
T−1∑
i=1

T∑
j=i+1

xni v
n
i � xnj vn

j . (6)

By applying field value variations FM (i.e., Equation (6)) to
each field along a user’s historical operation events, we get
the representations of all fields F = [f1,f2, ...,fN ] there-
after for the Field Importance-aware Module.
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Figure 3: The proposed DIFM model, for simplicity, we do
not represent the “wide” part.

In fraud detection, if a user’s IP changes over a short pe-
riod, the field value variation tends to indicate a higher risk.
In order to perceive the relative importance of fields, for the
vector set F = [f1,f2, ...,fN ] of different fields captured
with the FM, we apply the Field Importance-aware Module
in Equation (5) as follows:

f = IM(F ) =

N∑
n=1

anF3(fn), (7)

where an is the importance weight learned according to
Equation (4). We hope the model could pay more attention
to important fields and focus on useful features for the cur-
rent task. As long as a user’s field value variations relate to
the fraud label, it will be captured by our model via the field
value variations perspective.

Field Interactions Perspective
In this subsection, we capture the field interactions with the
above two modules.

In fraud detection, a fraudster’s behavior can often be de-
tected by interaction of different features, since combination
patterns usually have stronger relevance to fraud than single
features. As mentioned above, FM can be seen as perform-
ing the field interactions between any two field values. How-
ever, simple calculation of interactions among all features is
inefficient and will introduce noise to the model, since the
interactions of fields between different events provide little
info for the prediction. For example, fraudster logged in with
normal IP#1 in event#1 and buy high-risk item of cate-
goryC#2 with high-risk IP#2 in event#2, the interaction
between features IP#1 and C#2 provides little informa-
tion, while the internal interaction in event#2 (e.g., interac-
tion between C#2 and IP#2) can capture the event repre-
sentation better than any single features, and it will improve

the prediction accuracy. Therefore, we capture the field in-
teractions inside each event. For the t-th event et, we per-
form the field interactions in all fields as the blue box shown
in Figure 3 as follows:

et = FM(xt) =

|V |−1∑
i=1

|V |∑
j=i+1

xtiv
t
i � xtjvt

j . (8)

Thus, we can obtain an effective event representation. Some
existing methods (Wang et al. 2017b; Zhang, Zheng, and
Min 2018; Tang et al. 2019) can also obtain an event rep-
resentation using a simple dense layer and the embedding
concatenation, but they can not effectively extract the inter-
nal information of each behavior event. Now, we apply the
field interactions FM (i.e., Equation (8)) to each event along
a user’s historical operations, and we get the representations
of all events E = [e1, e2, ..., eT ] thereafter for the Event
Importance-aware Module. Among them, eT is the user’s
current payment event, whose risk we are trying to model.

Besides, the user’s final behavior activity is strongly cor-
related with the user’s past several activities and each histor-
ical event of users might have different importance. For ex-
ample, in card-stolen fraud detection scenario, if one event
has multiple abnormal field values, the event is prone to have
a higher risk than the normal event. Naturally, a good model
should pay more attention to such abnormal events. In or-
der to perceive the relative importance of different events,
after we get the the vector set Ehis = [e1, e2, ..., eT−1]
by utilizing the mentioned FM above, we apply the Event
Importance-aware Module in Equation (5) as follows:

ehis = IM(Ehis) =
T−1∑
t=1

atF3(et), (9)

where at is the importance weight learnt according to Equa-
tion (4).

Thus, the proposed DIFM can effectively exploit internal
features and perceive the importance from dual perspectives
simultaneously. Moreover, the Field and Event Importance-
aware Module can provide explainable prediction results by
indicating which fields or events are crucial for generating
the risk score.

The final DIFM architecture is shown in Figure 3, we
combine the field value variations feature f in Equation
(7), the field interactions feature ehis in Equation (9) and
the current prediction event eT and feed them to an MLP.
The output of the MLP is combined with a “wide” part (for
simplicity, we do not represent this part in Figure 3), and
then fed to the sigmoid activation function to form the final
DIFM, which seamlessly combines the field value variations
and field interactions perspectives:

s = [f ; ehis; eT ], (10)
ŷ = sigmoid(MLP (s) + f(x)), (11)

where f(x) is the “wide” part just like the part in
Wide&Deep (Cheng et al. 2016) and ŷ indicates the prob-
ability of fraud. The f(x) is defined as follows:

f(x) =
T∑

t=1

|V |∑
i=1

wix
t
i + w0, (12)
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Dataset #pos #neg #fields #events

C1 15K 1.37M 56 4.28M
C2 10K 1.93M 56 3.57M
C3 5.7K 174K 56 353K

Table 1: Summary statistics for the datasets.

where wi scores the importance of the field value xi, which
can indicate high-risk or low-risk for directly using in black-
list or whitelist.

For classification tasks, we need to minimize the cross
entropy loss:

L(θ) = − 1

S

S∑
(x,y)∈D

((y log ŷ + (1− y) log(1− ŷ)) , (13)

where S is the number of samples, y is the label of sample
x and θ is the parameter set, which contains the embedding
vector vi, the weight wi in the “wide” part, and the parame-
ters in F1, F2, F3 and MLP.

The model is implemented using Tensorflow and trained
through stochastic gradient descent over shuffled mini-
batches with the Adam (Kingma and Ba 2014) update rule.

Experiments
In this section, we perform experiments to evaluate the pro-
posed DIFM model against state-of-the-art methods on real
industrial datasets. Below, we will introduce the datasets,
baseline methods, implementation details and evaluation
metrics of our experiments. In the end, we present our ex-
perimental results and further analysis.

Datasets
The statistics of all datasets used are shown in Table 1. The
datasets contain the card (debit card or credit card) trans-
action samples from one international e-commerce plat-
form, which utilizes a risk management system to detect
the transaction frauds in real-time, i.e., card-stolen cases.
We utilize user’s historical behavior activity events of the
last month in three different trading regions, i.e. countries
from Southeast Asia (C1, C2, C3), which consist of 6 event
types (i.e., sign up, sign in, digital goods payment, regu-
lar goods payment, information modification and card bind-
ing). And for all events, the following fields are used in
our analysis: IP-information, shipping-information, billing-
information, card-information, item-category, operation-
result, user-account-information, device-information, etc.
The task is to detect whether the current payment event is
a card-stolen case. The fraud labels are from the charge-
back reports from card-issuing banks (e.g., the card issuer
receives claims on unauthorized charges from the cardhold-
ers and reports related transaction frauds to the merchants)
and label propagation (e.g., the device and card informa-
tion are also utilized to mark similar transactions). We take
the last 10% in chronological order as the validation set in
each dataset to verify the convergence of the model, and
in order to verify the generalization ability, only the hyper-
parameters are tuned on the same C1 validation set.

Baselines
We compare the proposed method with the following com-
petitive and mainstream models which contain feature in-
teractions based models (W&D, DeepFM, NFM, AFM,
xDeepFM) and event sequence based models (LSTM4FD,
LCRNN, M3). For all feature interactions based models, we
use all the features of the user’s events as the input:

• W&D (Cheng et al. 2016): It consists of “wide” and
“Deep” parts, where the “wide” part is a linear model and
the “Deep” part is an MLP.

• DeepFM (Guo et al. 2017): FM and MLP are combined
in this model and fed to the output layer in parallel.

• NFM (He and Chua 2017): This is a simple and efficient
neural factorization machine model whose FM is fed to
MLP for capturing higher-order feature interactions.

• AFM (Xiao et al. 2017): It adds the attention mechanism
to the FM to consider the importance of different pairs.

• xDeepFM (Lian et al. 2018): This is the state-of-the-art
feature interactions based model which attempts to learn
higher-order feature interactions explicitly.

• LSTM4FD (Wang et al. 2017b; Zhang, Zheng, and Min
2018): These works have applied LSTM for fraud detec-
tion task, and we call these methods as LSTM4FD.

• LCRNN (Beutel et al. 2018): It uses “Latent Cross” to
incorporate contextual data in the RNN by embedding the
context feature first and then performing an element-wise
product of the context embedding with the model’s hidden
states.

• M3 (Tang et al. 2019): This is the state-of-the-art event se-
quence based model which deals with both short-term and
long-term dependencies with mixture models, we choose
the better one mixture model M3R-TSL.

Implementation Details
For all datasets, we use: embedding dimension k of 64, the
maximum number of events T of 20, one hidden layer of
MLP and the dimension is 64, mini-batch size of 256 and
learning rate of 0.0005. We also use L2 regularization with
λ = 1e − 6, and dropout probability is 0.2. All these val-
ues and hyper-parameters of all baselines are chosen via a
grid search on the C1 validation set. We do not perform
any datasets-specific tuning except early stopping on valida-
tion sets. The proposed model is trained offline and regularly
updated. Meanwhile, the prediction phase is relatively fast,
which can meet the requirement of real-time solutions. We
conduct experiments of all models with NVIDIA GeForce
RTX 2080 GPU.

Evaluation Metrics
To evaluate the performance of our proposed DIFM model
and the baselines described above, we follow the existing
works (Guo et al. 2017; Lian et al. 2018) to use the stan-
dard metric: AUC (Area Under ROC). In binary classifica-
tion tasks, AUC is a widely used metric. In our real card-
stolen fraud detection scenario, we should increase the re-

14961



Model
C1 C2 C3

AUCFPR≤1% AUCFPR≤1% AUCFPR≤1%

W&D 0.700±0.001 0.777±0.002 0.820±0.009
DeepFM 0.707±0.006 0.773±0.004 0.848±0.007

NFM 0.747±0.003 0.793±0.007 0.831±0.022
AFM 0.709±0.005 0.780±0.007 0.850±0.007

xDeepFM 0.739±0.004 0.783±0.008 0.856±0.014

LSTM4FD 0.712±0.009 0.736±0.008 0.776±0.009
LCRNN 0.719±0.007 0.785±0.011 0.816±0.019

M3 0.729±0.006 0.790±0.005 0.762±0.027

DIFM-same 0.751±0.004 0.828±0.006 0.862±0.015
DIFM-α 0.740±0.007 0.808±0.007 0.854±0.019
DIFM-β 0.764±0.011 0.823±0.009 0.863±0.006
DIFM 0.768±0.009 0.849±0.008 0.887±0.011

Table 2: AUCFPR≤1% performance (mean±95% confi-
dence intervals) on three datasets.

call rate of the fraudulent transactions, at the same time, dis-
turbing as few normal users as possible. In other words, we
need to improve the True Positive Rate (TPR) on the basis
of low False Positive Rate (FPR). Therefore, we adopt the
standardized partial AUC (AUCFPR≤maxfpr) (McClish
1989) (The standardized area of the head of the ROC curve
when the FPR ≤ maxfpr). In practice, we require FPR to
be less than 1%. Hence, we use AUCFPR≤1% for all ex-
periments. Besides, we also focus on some specific points
on the head of ROC curve, i.e., the TPR when the FPR are
0.05%, 0.1%, 0.5% and 1%, respectively. For all experi-
ments, we report the metric with 95% confidence intervals
on five runs.

Experimental Results
The results evaluated by AUCFPR≤1% on C1, C2 and C3 are
presented in Table 2. We can observe that the performance
of baseline models varies on different countries.

For the C1 dataset, the performance of W&D is in-
ferior compared with other baselines with respect to
AUCFPR≤1%, one possible reason is that W&D could not
automatically learn feature interactions, and there is only
a simple linear model in its “wide” part. Besides, DeepFM
and AFM obtain similar performance compared with W&D.
DeepFM and W&D both have parallel structures, and al-
though the FM in DeepFM captures second-order feature
interactions, it is directly fed to the output layer and failed
to capture higher-order feature interactions. Pairs weighted
AFM is also fed directly to the output layer, and therefore
it lacks higher-order feature interactions information. On
the contrary, the FM in NFM is fed to MLP for capturing
higher-order feature interactions, so NFM almost performs
the best among all baseline models. Similarly, xDeepFM at-
tempts to learn higher-order feature interactions explicitly,
so xDeepFM improves the results compared with W&D and
DeepFM. For event sequence based models, LSTM4FD and
LCRNN obtain similar performance. Due to dealing with
both short-term and long-term sequence dependencies with
mixture models, M3 obtains further performance improve-

ment. However, these models do not consider feature inter-
actions, so the improvement is limited.

Similar results can also be observed on dataset C2 for fea-
ture interactions based models. For event sequence based
models, the performance of LSTM4FD, which simply ap-
plies LSTM for fraud detection, is unsatisfactory as well.
LCRNN and M3 obtain similar performance, and LCRNN
is effective for dataset C2 due to incorporating the contex-
tual data in the RNN.

The label distribution of C3 varies from those of the previ-
ous two datasets, and it has fewer positive samples, negative
samples and available events than C1 and C2 as shown in
Table 1. Therefore, the AUCFPR≤1% performance of these
models varies a lot, and the 95% confidence intervals of
AUCFPR≤1% of these baseline models is obviously larger
than the performance on C1 and C2 datasets. Besides, for
event sequence based models, LSTM4FD, LCRNN, and M3
are undesirable due to the fewer number of historical events
on the C3 dataset.

Besides, the DIFM which uses multiple feed-forward net-
works in the Importance-aware Module is more effective
than DIFM-same, which only uses a single feed-forward net-
work. Moreover, for better understanding the contribution
of different perspectives, we construct ablation experiments
over DIFM-α, DIFM-β and DIFM. DIFM-α and DIFM-β
utilize the field value variations and field interactions per-
spectives in their models, respectively. The field interactions
perspective brings greater gain than the field value variations
perspective. Furthermore, the proposed DIFM model can
efficiently take advantage of internal field features among
events from dual perspectives and obtain the best perfor-
mance on all three datasets, which indicates both two per-
spectives contribute to the performance. Instead of captur-
ing sequence information directly, our proposed DIFM cap-
tures more fine-grained value-variations information. Fre-
quent value-variations of certain field in event sequences
is a signal which strongly correlates to fraudulent activi-
ties. For example, user with IP changing from IP#1 to
IP#2 indicates higher risk comparing to user with sta-
ble IP. DIFM captures value-variations of each field be-
tween any two events in user’s operation sequences via the
Field Value Variations module. Combined with Field Inter-
actions module, which captures field-in-event-relations, our
proposed framework captures information more effectively.
And this explains why it outperforms other sequence learn-
ing architectures, i.e. RNN-based baselines. These improve-
ments also indicate that the proposed DIFM model can better
handle the fraud detection task. Similar conclusions can also
be observed in the results evaluated by TPR (when the FPR
are 0.05%, 0.1%, 0.5% and 1%, respectively) on datasets of
C1, C2 and C3, which are presented in Figure 4.

Case Study
In this subsection, we make some analysis on the explain-
ability of the proposed DIFM on C3 dataset.

Firstly, we extract four highest-risk and lowest-risk field
values from four fields according to the learned weights of
“wide” part in Equation (12). We present the field values in
Table 3. To conform to Data-Protection-Regulation of the
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Figure 4: Mean TPR (when the FPR are 0.05%, 0.1%, 0.5% and 1%, respectively) performance over five runs on datasets of
C1, C2 and C3, and the short black lines represent 95% confidence intervals.

Card bin IP ISP Email suffix Issuer

#1 (94/105) #1 (5/8) #1 (28/28) #1 (76/79)
High #2 (46/46) #2 (30/30) #2 (59/59) #2 (136/137)
Risk #3 (12/12) #3 (22/22) #3 (56/60) #3 (105/113)

#4 (78/82) #4 (4/5) #4 (149/183) #4 (77/85)

#5 (0/58) #5 (0/81) #5 (0/1120) #5 (1/1008)
Low #6 (0/181) #6 (0/384) #6 (0/101) #6 (0/34)
Risk #7 (0/38) #7 (0/89) #7 (3/5958) #7 (0/20)

#8 (0/239) #8 (0/38) #8 (0/79) #8 (0/54)

Table 3: The extracted high risk (high weight) and low risk
(low weight) field values according to the learned weights in
Equation (12), the “Card bin” is the last six digits of the card
number, the “IP ISP” is Internet Service Provider for the IP,
the “Email suffix” is the suffix of the email and the “Issuer”
is the name of the issuing bank.
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Figure 5: The extracted high-risk fields and events via the
Importance-aware Module in two fraud samples.

company, we replace the real field values with #number and
present the ratio of each field value with (fraud number/total
number). We can clearly observe that these extracted field
values have strong correlation to frauds. For example, the
Email suffix #2 occurs 59 times and all of them are fraud
samples, while the Email suffix #5 occurs 1120 times and
all of them are normal usage. Therefore, these field values

can be directly added to the blacklist and whitelist. By the
way, in our risk management system, model predication is
used together with rule-based methods, and this gives double
insurance to our system.

Then, we extract some high-risk fields and events for two
fraud samples according to the learned importance weights
in Equation (4). The field value variations of each field and
field interactions of each event can be regarded as model-
ing of users’ fraud patterns. We present the fraud patterns in
Figure 5. The solid circle represents that the field value has
changed since the last event. The depth of color for each
square illustrates the distributions of importance weights.
The darker the color is, the higher weight it has.

The fields of Card bin, IP ISP, Email suffix and Issuer
should be relatively stable for normal users, but for sample
(1), these fields change multiple times in the account’s op-
eration history, which indicates a high risk. Therefore, these
fields obtain higher weights. Meanwhile, the events 2, 4, and
5 have multiple abnormal field values, which makes them
more significant than other normal events. The distribution
of the event weights also confirms this. A similar pattern can
also be observed in sample (2).

These observations demonstrate that our DIFM model can
effectively find the important fields and events from dual
perspectives. These above results also demonstrate that the
proposed DIFM has the capability to provide explainable
prediction results. These explanations are of great help to
the human experts in analyzing the fraudulent cases.

Conclusion
In this paper, we proposed DIFM , a model for real-time
transaction fraud detection. Specifically, DIFM utilizes the
Factorization Machines and the proposed Importance-aware
Module to exploit user’s behavioral information from dual
perspectives, which are field value variations perspective
and field interactions perspective. The extensive experimen-
tal results on real-world industrial data collected from an
e-commerce platform clearly demonstrate the performance
improvements of our proposed model compared with vari-
ous state-of-the-art baseline methods and the case study fur-
ther approves the explainability of our model.
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Ethical Impact
The assumption that fraudsters like to assume identities of
a specific societal group will not affect the normal members
of this group. Since our system and algorithm target risky
transactions instead of users and cards. It does not blacklist
them. For most cases, when trades are marked risky by our
system, the trade operator need to provide evidence that they
are the authentic owner of the account/card in order to con-
tinue the payment process. When applying machine learn-
ing algorithm for the detection tasks, there will definitely be
false positive cases. On the one hand, we try to improve the
precision and recall in the training phase in order to mini-
mize the misclassification rate. On the other hand, when de-
ploying the model to the real-time detection system, there
will be different action levels in dealing with the risky cases.
For example, transactions with the highest score (highest
risk probability) will be rejected directly; transactions with
a mid-high score (relatively lower risk) will be transferred
to the verification phase. As long as the operator could pass
authentication, the payment could continue. Therefore, the
authentic owner can pass the verification phase to finish the
transaction. Besides, we have customer service waiting for
the false positive case’s appealing. Such cases will help us
improve algorithm performance in the future. Meanwhile,
fraudsters usually possess lots of stolen accounts/cards, im-
itating regular people’s operation will largely improve their
cost and compress their profitability. Forcing them to such
unprofitable situation, it will eventually make them leave.
Therefore from a macro perspective we lower the risk level
of the platform and protect the users asset in our platform.
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