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Abstract

Forecasting reservoir inflow is critical for making many poli-
cies, ranging from flood control and agriculture irrigation
to water ecology management, hydropower generation, and
landslide prevention. Prior studies mainly exploit autoregres-
sive models – e.g., recurrent neural networks (RNN) and its
many variants – to model the flow time series’s temporal pat-
tern. However, existing approaches rely on regular and ac-
curate inflow observations, which either fail to predict multi-
scale inflow (e.g., an hour, a day, or a month ahead prediction)
or ignore the uncertainty of observations due to confound-
ing factors such as snowmelt and precipitation. To address
the limitations, we propose a novel inflow forecasting model
by incorporating the uncertainty of the observations into the
RNN model and the continuous-time dynamics of the latent
states with neural ordinary differential equations (ODE). Our
method, called FlowODE, explicitly encodes the stochastic-
ity of hidden conditions in addition to the temporal depen-
dencies among inflow observations. Moreover, FlowODE ex-
plores a continuum of layers instead of discrete RNNs to
model the hidden states’ dynamics, allowing us to infer the
inflow at any time horizon flexibly. We conduct extensive ex-
periments on the real-world datasets collected from two large-
scale hydropower dams. The results show that our method
consistently outperforms previous inflow forecasting models
while providing adaptable predictions and a flexible balance
between prediction accuracy and computational cost.

Introduction
Artificial reservoirs are built by constructing dams on rivers,
regulating natural streams by storing excess water in the
rainy season, and supplying the stored water for future use.
Large-scale reservoirs play vital roles in optimizing water
resources management, such as water supply, flood/drought
regularization, hydropower maximization, aquatic ecosys-
tem balance, sediment transportation, and potential geo-
logical hazards (e.g., landslide and fluvial deposit) (Cuena
1983; Yin et al. 2016; Chang and Tsai 2016; Moshe et al.
2020). Most of the dams operate according to the predefined
rules depending on climate change and historical observa-
tions. Because of numerous influencing factors, both intrin-
sic (e.g., precipitation and snowmelt) and extrinsic (e.g.,
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downstream water regulation and agriculture irrigation), op-
timal reservoir operation is difficult (Petrik and Zilberstein
2011). For example, excess water in summer should have
been stored for future hydropower generation, but the stor-
age capacity needs to be maintained at a low level to tolerate
the possible flood peaks. However, water discharge may re-
sult in significant loss of electricity revenue, which may be
fundamentally reduced if accurate and reliable inflow fore-
cast can be made in advance (Ahmad and Hossain 2019).
Related work. Traditionally, reservoirs are operated based
on the knowledge of experts who usually design mathe-
matical/physical models to simulate the dynamics of in-
flow/outflow. For example, earlier works (Sigvaldson 1976;
Cuena 1983; Georgakakos and Marks 1987) prescribe time-
based rules based on which different operations of the reser-
voir system can be simulated and configured for making
optimal policies. However, predefined rule-based models
cannot handle sudden events (e.g., flood and dam break),
which prevents their applicability in real-time reservoir op-
eration. (Petrik and Zilberstein 2011) propose to optimize
hydroelectric systems using the knowledge of inflow and
water discharge and introduce linear dynamic programs to
solve the partially observable Markov decision processes.

Typical machine learning methods have shown the ability
to fit complex multivariate time series data (e.g., inflow and
outflow), and extract empirical knowledge and time-varying
demands for improving reservoir operation. For instance,
AutoRegressive Integrated Moving Average (ARIMA) fam-
ily models have been used to model hydrological time se-
ries (Wang et al. 2015). Bayesian networks, as well as K-
means clustering, were applied for predicting annual and
monthly inflow (Noorbeh, Roozbahani, and Moghaddam
2020). Other algorithms, such as support vector regression
and neural networks, have also been employed for learn-
ing nonlinear and nonstationary characteristics of hydrolog-
ical data in the literature (Aboutalebi, Bozorg Haddad, and
Loáiciga 2015; Hadiyan, Moeini, and Ehsanzadeh 2020).

Recent advances in deep learning, especially the recur-
rent neural networks (RNN), spurs a few of these studies on
applying RNNs for modeling the hydrological time series
and predicting reservoir inflow (Yang et al. 2019; Babaei,
Moeini, and Ehsanzadeh 2019) due to the ability of RNNs
on learning intricate dynamic temporal dependencies. (Yang
et al. 2019) develops a real-time reservoir operation system
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and verifies the effectiveness of RNNs in annual flow pre-
diction based on the records of reservoirs in the upper Chao
Phraya River. Similarly, (Banihabib, Bandari, and Peralta
2019) studied daily streamflow predictions and presented
a model combing RNN and dynamic memory with exoge-
nous inputs to forecast regular reservoir inflow. A recent
study (Apaydin et al. 2020) evaluates several deep autore-
gressive models, including vanilla RNN, long short-term
memory (LSTM) (Hochreiter and Schmidhuber 1997), and
gated recurrent unit (GRU) (Chung et al. 2014), on inflow
prediction using the daily observational flow in Ermenek
dam reservoir located in Turkey and found that LSTM per-
forms the best on prediction accuracy.
Motivations. Despite the promising results achieved in prior
studies, they are still susceptible to particular challenges.
First, the future reservoir inflow is inherently uncertain
due to the inaccurate observations and unpredictable fac-
tors (e.g., snowmelt and groundwater). Although previous
endeavors have combined multiple deterministic results to
yield probabilistic prediction or infer the probability distri-
bution of predicted errors (Chang and Tsai 2016), few works
pay attention to the capability of modeling observation un-
certainty and inferring the density of stochastic variables of
the neural networks. Besides, inflow prediction refers to a
range of continuous-time series (e.g., discharge water, hy-
dropower generation, and climate change). However, neu-
ral networks model the continuous dynamic systems but
take discrete-time observations as input. This may not meet
the complex control systems’ requirements such as reser-
voir operation, where high-frequency feedback is necessary
to maintain system flexibility and stability. Lastly, multi-
horizon predictions (e.g., hourly and weekly) that are imper-
ative for robust systems have not been sufficiently studied
yet. This attribute would enable the systems to not only re-
spond quickly to emergencies (e.g., flood and landslide) but
also persistently optimize long-term strategies (e.g., aquatic
ecosystem protection and hydroelectricity revenue).
Present work. To remedy the above limitations of prior
studies, we present an alternative view of reservoir opera-
tion by modeling the multivariate time series as a contin-
uous dynamic system instead of discrete-time neural net-
works. Specifically, we present a stochastic RNN to cap-
ture the sequential dependencies among the temporal obser-
vations, while empowering deterministic and simple para-
metric models with uncertainty and multimodality. Inspired
by recent advances in neural ordinary differential equations
(ODE) (Chen et al. 2018; Rubanova, Chen, and Duvenaud
2019), we propose to deal with multivariate flow time se-
ries in a continuous dynamic manner, rather than the deep
but fixed layers used in previous RNN-based flow predic-
tion models (Yang et al. 2019; Banihabib, Bandari, and Per-
alta 2019) and stochastic RNNs (Fraccaro et al. 2016; Goyal
et al. 2017). By extending the discrete state transitions to
continuous transformations, our model can forecast multi-
horizon inflow without retraining the model. Moreover, the
ability to trace the footprint of solving ODEs enables us to
balance computational cost and the prediction accuracy.

In this study, we develop a new model, called FlowODE,
to optimize reservoir operation by improving the inflow pre-

diction accuracy. Our main contributions are as follows:

• We present a deep Bayesian RNN-based inflow prediction
model to explicitly account for the stochastic variables as-
sociated with observations in addition to sequential con-
ditions.

• We initiate the attempt to exploit neural ODEs for model-
ing multivariate flow data and provide a new perspective
of learning continuous time series and inferring different
horizons of future inflow.

• We conduct extensive experiments on real-world datasets
collected from two large-scale reservoirs. The empirical
evaluations demonstrate that FlowODE significantly im-
proves the reservoir inflow prediction while providing ex-
plainable results of the model behavior.

Methodology: FlowODE
Problem Definition
We consider a set of multivariate time series observations
X, each of which x ∈ X consists of electricity power v and
water flow w. The electricity, defined as v = {v1, v2, v3},
contains of three types of power, i.e., total power generation,
on-grid power and auxiliary power. The water flow, defined
as w = {w1, w2, w3}, is composed of water inflow, out-
flow and generation flow. Specifically, we study the follow-
ing problem in this work:

Problem 1 Multi-horizon Reservoir Inflow Forecasting
(MRIF). Given a series of N past water flow observations
Wt = {wt−N+1,wt−N+2, · · · ,wt} ∈ RN×P (P = 3 de-
notes the vector dimensions) and the historical electricity
power Vt = {vt−N+1,vt−N+2, · · · ,vt} ∈ RN×P , and
external factors e, the goal of MRIF task is to learn a func-
tion F to predict the volume of water inflow ŵτ at future
time step τ = t+ M t, where M t can be an hour (M t = 1),
a day (M t = 24), or a week (M t = 7× 24):

ŵτ = F (Wt,Vt|eτ ; Θ) , (1)

where Θ denote parameters.

Architecture Overview
FlowODE, as an inference network (encoder-decoder archi-
tecture), not only captures the rich temporal correlations
among multivariate observations but also has the ability to
account for the uncertainty of the time series with the pro-
posed stochastic recurrent neural networks (SRNN). Be-
sides, ODE solvers play the role of extrapolation decoder
in this inference network, outputting the future latent vari-
able z at multi-horizon time steps, which will be used for
predicting different horizons of future inflow. Moreover, a
hierarchical RNN is designed for modeling high-level tem-
poral dependency to capture latent input variables Z1:t and
hidden states H1:t. The multi-head attention mechanism en-
ables FlowODE to focus on the critical part of inflow obser-
vations. Otherwise, we consider social and natural factors
into the model and present a gated fusion layer for real im-
pact information selection. Finally, we use multilayer per-
ceptrons (MLPs) for multi-horizon water inflow forecasting.
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Figure 1: Overall architecture of the proposed FlowODE.

We summarize the overall architecture of FlowODE in Fig-
ure 1. In the rest of this section, we will introduce the details
of each component.

Stochastic RNN with ODEs
A simple but effective approach is to utilize an RNN for
modeling the temporal dependencies for traditional time se-
ries tasks. For example, LSTM and GRU are widely used
as the basic module for modeling and predicting time se-
ries. However, when applying such RNNs for modeling
large-scale multivariate time series, the prediction accuracy
would be deteriorated by the uncertainty relationship (inter-
nal dependency) among various data. Besides, RNNs per-
form better on capturing fixed-interval dependence and may
fail or achieve poor performance on multi-horizon predic-
tions. To address this problem, we introduce a stochastic
RNN (SRNN) model incorporating stochastic latent vari-
ables z into RNN to model the uncertainty of water flow.
More specifically, with observations X as input, we first gen-
erate the mean µ and variance σ instead of modeling the
hidden state h directly at every time step. Then, we use nu-
merical ODE solver to transform µ and σ in a continuous
way, which means we can obtain µ and σ of each time step
more accurately and encourage GRU to produce latent vari-
able at any desired time as long as we change the integration
time in the ODE solver.

Neural ODE (NODE) (Chen et al. 2018) considered the

infinite-steps hidden state update in neural networks to re-
place the discrete sequence of hidden states transforma-
tion. NODE solves the initial value problem with continuous
transform and can compute the constant dynamics of hidden
states z via ODEs:

dz(t)

dt
= fω(z(t), t), where z(t) = zt,

z(t1) = z(t0) +

∫ t1

t0

fω(z(t), t)dt, (2)

where fω is parameterized by ω specifying a neural network.
By regarding the infinite hidden state update process of the
neural ODE block as solving ODEs with numerical meth-
ods such as Euler, Runge–Kutta and adjoint method (Dor-
mand and Prince 1980; Ascher, Ruuth, and Spiteri 1997), it
allows us to obtain the hidden states z(t) at any desired mo-
ment (Chen et al. 2018). NODE proposed to use an adjoint
method to simulate a dynamical system. However, the dy-
namics of either the hidden state or the adjoint might be un-
stable due to numerical instability of backward ODE solve.

In our FlowODE, we abandon the adjoint method that
NODE employed to compute the gradients and alternatively
use the primary Euler method as the numerical solver. We
summarize the procedure as:
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I =
[
µh
t−1, σ

h
t−1,xt

]
,

O =
[
µh
t−1R (I), σh

t−1R (I),xt
]
,

µ̂, σ̂ = tanh (WoO + bo) ,

[µ, σ] = ODESolve (fω, [µ̂, σ̂] , t− 1, t) ,

µh
t = (1−U (I))µ+ U (I)µh

t−1,

σh
t =

∣∣(1−U (I)) |σ|+ U (I)σh
t−1
∣∣ , (3)

where fω denotes the differentiable network parameterized
by ω; I represents the input of reset gate R and update gate
U; O denotes the input of new mean and sigma update net-
work in the GRU cell; Wo indicates the learnable parame-
ters in GRU unit. Now, we can directly sample zt from the
learned distribution qφ (zt|Xt, zt−1) using the reparameter-
ization trick (Kingma and Welling 2014):

zt = Wµ

[
µh
t , µ

h
t−1
]

+ Wσ

[
σh
t , σ

h
t−1
]
∗ ε, (4)

where Wµ and Wσ are the corresponding parameters. ε are
samples from a standard Gaussian ε ∼ N (0, I). Therefore,
SRNN outputs a sequence of latent variables Z1:t taking into
account the uncertain observations. We can now train the
water flow inference network by maximizing the evidence
lower bound (ELBO) as follows:

ELBO (θ, φ) = Eqφ log

[
pθ (Xt, zt)

qφ (zt|Xt)

]
= Eqφ log [pθ (Xt|zt)] + Eqφ log [pθ (zt)]

− Eqφ [qφ (zt|Xt)] , (5)

where the first item is the reconstruction likelihood function
based on the variational posterior distribution, and the last
two items are the KL Divergence of the prior distribution
and the variational posterior distribution. Parameters θ and
φ are the inference network q(·) and generate network p(·),
respectively.

Multi-horizon Dependency Learning
RNN-based models usually perform well on fix-interval ob-
servations but may fail to model irregular samplings. In
our case, we would like to model flexible sampling inter-
vals and learn the multi-horizon dependencies. Here we
exploit self-attention to learn the conditioned non-uniform
dependencies among the flow data. Standard self-attention
mechanism (Vaswani et al. 2017), such as additive or dot-
product attention, have been widely employed for global
long-term temporal dependency extraction. However, multi-
horizon water flow prediction relies on a different part of
historical observations, which means we need to enable our
model to focus on different historical information periods.
In FlowODE, we use multi-head attention, as scaled dot-
product attention, to enhance the model’s ability to judge
the importance of information in different periods.

Given observations Xt = {xt−N+1,xt−N+2, · · · ,xt} ∈
RB×N×2P , we first utilize the linear function to transform
the matrix Xt into query matrix Q, key matrix K and value

matrix V (Q, K and V ∈ RB×N×M , where B represents
batch size and M denotes the dimensions of matrix), and
split each matrix to h parallel heads:

QWQ =
[
Q1W

Q
1 ,Q2W

Q
2 , . . . ,QhW

Q
h

]
,

KWK =
[
K1W

K
1 ,K2W

K
2 , . . . ,KhW

K
h

]
,

VWV =
[
V1W

V
1 ,V2W

V
2 , . . . ,VhW

V
h

]
, (6)

where W∗
i ∈ RM/h×M/h are the i-th head parameter of

queries, keys and values, respectively. Qi ∈ RBh×N×M/h

represents the i-th head of the query matrix. Subsequently,
we calculate the affinity matrix corresponding to each head
to obtain the weight scores:

ai = softmax


(
QiW

Q
i

)> (
KiW

K
i

)√
M/h

 ,where i ∈ h,

where ai is the weight score for i-th head. Then, each feature
representation hai can be calculated by element-wise prod-
uct operator with i-th value matrix Vi and its corresponding
parameter WV

i :

hai = ai �
(
ViW

V
i

)
, (7)

where � denotes the Hadamard product. Finally, the atten-
tion feature representation hat at time t can be obtained by
concatenating h parallel heads representations:

hat = concat [ha1 ,h
a
2 , · · · ,hah] . (8)

Extrapolation & Reconstruction Decoders
There are two decoders in FlowODE, namely the recon-
struction decoder and the extrapolation decoder. The for-
mer is used to reconstruct the input to obtain the stochas-
tic variables Zt in a self-supervised learning manner. The
later one takes a series of output of SRNN as the input, i.e.,
Zt = {zt−N+1, zt−N+2, · · · , zt}, and uses a vanilla GRU
to reconstruct the original input data Xt.

As for the extrapolation decoder, we use ODE Solver as
the continuous autoregressive layers. Taking the stochastic
latent variable zt at time t as the initial value, we can ar-
bitrarily calculate the latent variables zτ corresponding to
different time steps in the future (e.g., an hour, a day, or a
week)

zτ = ODESolve (fν , zt, τ) , (9)
where we use Dopris method (Dormand and Prince 1980)
as the numerical solution. The main objective of the extrap-
olation decoder is to adapt our model to multi-horizon sce-
narios, which, combined with the multi-horizon dependency
learned by the self-attention, can be readily used to predict
the future inflow at any scale.

External Factors Fusion
As we mentioned, external factors (e.g., precipitation and
flood discharge in the upstream reservoir) are also cru-
cial to predicting water inflow. Furthermore, reservoir in-
flow is highly seasonal and varies significantly with weather
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conditions. For example, increased temperature will cause
glaciers to melt. Besides, human activities (e.g., irrigation
and navigation) will also affect the reservoir inflow. There-
fore, in this work, we collectively refer to these effects as
external factors and design a factor extraction network for
learning the impact of these factors. Specifically, we em-
bed continuous temporal features into low-level dimensions
and directly fed the categorical features into the network, ap-
pending an ODESolve layer to capture such influence. Af-
ter that, all external factor information is compressed into
a vector ve, which contains both negative (e.g., noise, out-
lier, abnormal points, and inaccurate measurement points)
and positive information. To screen out the negative factors
while maintaining the beneficial knowledge, we introduced
a gated fusion layer to generate the influence factor e:

e = sigmoid (Weve + be) ◦ODESolve (ve) , (10)

where sigmoid is used as the activation function, normaliz-
ing the factors impact into the range [0,1].

Inflow Prediction
For the inflow prediction task, modeling multi-level depen-
dencies is an indispensable technique for improving the
model’s performance. Here we utilize a hierarchical RNN
to obtain multi-level temporal dependencies gt by passing
hidden states and latent variables into a Bidirectional-GRU:

gt =
[−−−→
GRU ([Zt,Ht]) ,

←−−−
GRU ([Zt,Ht])

]
. (11)

With the learned latent variables zτ via extrapolation de-
coder, attention feature representations hat by multi-head at-
tention, as well as the external factor e learned by factors fu-
sion layer, we are ready to forecast the multi-horizon water
inflow volume. We concatenate all of these learned features
and employ basic MLPs as the predictor, which generates
the future water flow volume ŵτ at time step τ :

ŵτ = MLP ([zτ ,h
a
t ,gt, eτ ]) , (12)

Objective: Forecasting multi-horizon water flow volume
can be regarded as a linear regression task. Therefore, by
simultaneously minimizing the mean squared error between
the real water volume (wτ ) and the predicted value (ŵτ ),
and maximizing the ELBO via Eq.5, the loss function is de-
fined as:

L(Θ) =
∥∥∥Xt − X̂t

∥∥∥2
2
+‖wt − ŵt‖22−ELBO (θ, φ) , (13)

where Θ denotes all parameters in FlowODE.

Experiments
Datasets: We conduct experiments on two real-world
datasets collected from two large-scale hydropower dams.
• PBG: is an artificial dam built in 2006 that houses a hy-

droelectric power station with 6× 600 MW generators for
a total installed capacity of 3,600 MW, and is the largest
hydropower station on the Dadu River.

• SXG: is a smaller hydropower station located in the
downstream of PBG, which is installed with 4× 165 MW
generators. As a regulation station of PBG, its inflow is
significantly affected by the discharge of PBG.

Dataset PBG SXG
Time interval 1 hour 1 hour
power generation (Mwh) [0.0, 3587.8] [0.0, 660.0]
Water flow
Water inflow [0.0, 7020.0] [0.0, 5571.0]
Avg. inflow 1549.0 1496.9
Water outflow [119.0, 5670.0] [53.8, 6090.0]
Generation flow [119.0, 2470.0] [55.1, 2480.0]
External Factors (meteorology, time and sale price)
temperature/◦C [-24.4 21.7] [-24.4 21.7]
HourOfDay [0.0, 24.0] [0.0, 24.0]
DayOfWeek [1, 7] [1, 7]
Max Precipitation 72.7 mm 74.1 mm
Control water level 841 m 665 m
Electricity price mask mask

Table 1: Statistics of datasets. Some social/economic infor-
mation such as sale prices is masked.

Table 1 shows the statistics of PBG and SXG data. Each
dataset includes two types of multivariate time series data
– hydropower generation and water flow information, and
each dataset is split into two different periods (P1 and P2),
both spanning one year. Otherwise, the external factors such
as rainfall and temporal are also taken into account for en-
hancing the robustness of the FlowODE.
Preprocessing: Due to the volume of water inflow can not
be measured directly, we obtain the inflow using reservoir
storage minus the water outflow at a certain time. Mean-
while, the Min-Max normalization is also used to regularize
all the value for speeding up the training. We segment the
time series into fixed-length sequences with length N (N =
1 × 24 × 7), and all sampling interval is 1 hour. Therefore,
each batch of training data has the shape Xt ∈ RB×N×2P ,
where B denotes the batch size.
Baselines: We compare our method with the following ap-
proaches that are widely used for time series forecasting:
(1) Historical Average (HA): uses the average value of the
previous T historical water inflow volume as the forecast-
ing result at T + τ time. (2) ARIMA: combines autore-
gressive (AR) and moving average (MA) for water inflow
prediction, and has been used for inflow prediction (Wang
et al. 2015). (3) SARIMA: expends additional seasonal
terms in the ARIMA models and therefore has more ro-
bust than ARIMA and has been widely used for time series
forecasting. (4) SVR: is a support vector regression method
that can be used to predict the reservoir inflow (Aboutalebi,
Bozorg Haddad, and Loáiciga 2015). (5) BN: a Bayesian
network-based method that predicts the reservoir inflow
Noorbeh2020 while preserving the uncertain nature of in-
flow. (6) LSTM (Hochreiter and Schmidhuber 1997): is a
well-known RNN model that captures the long-short tem-
poral dependencies with gating mechanism, and has been
widely used for inflow prediction (Yang et al. 2019; Babaei,
Moeini, and Ehsanzadeh 2019). (7) Bi-GRU (Chung et al.
2014): takes GRUcell as the basic unit and considers the im-
pact of post-set information on the current hidden state by
concatenating the forward and backward hidden states. (8)
GRU-VAE (Su et al. 2019): reconstruct the input time se-
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Datasets PBG SXG
Time span P1 P2 P1 P2

Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
HA 640.9 472.8 0.690 685.0 514.8 0.734 332.7 253.2 1.335 582.6 374.8 0.801

ARIMA 425.2 314.5 0.681 486.7 378.1 0.705 257.4 206.8 0.733 328.2 223.3 0.555
SARIMA 407.6 298.5 0.675 465.7 361.2 0.699 244.4 197.3 0.712 307.6 200.1 0.512

SVR 355.6 277.7 0.659 453.1 355.9 0.684 232.8 186.4 0.636 231.5 160.4 0.344
BN 345.1 271.2 0.655 450.6 352.3 0.676 229.5 177.6 0.614 209.2 144.7 0.321

LSTM 311.8 256.8 0.651 422.9 330.6 0.659 203.8 155.9 0.518 174.6 136.4 0.288
Bi-GRU 308.7 248.2 0.646 416.1 328.9 0.665 200.6 152.8 0.510 177.6 126.8 0.278

GRU-VAE 307.3 247.2 0.632 415.1 326.2 0.663 197.8 150.8 0.501 174.6 124.8 0.261
LatentODE 306.5 246.7 0.626 412.4 324.5 0.659 195.1 150.2 0.498 172.7 124.9 0.258
FlowODE 296.3 236.6 0.596 401.5 312.3 0.621 184.7 141.4 0.466 166.2 114.8 0.231

Table 2: Performance comparisons of algorithms on two datasets over two different periods. A paired t-test was performed for
statistical significance of the results (p < 0.005).

ries from the latent variable of observations by VAE, and
employs GRU as the basic module for both the encoder and
decoder. (9) LatentODE (Rubanova, Chen, and Duvenaud
2019): generalizes RNNs to have continuous-time hidden
dynamics defined by ODEs. It explicitly models the irreg-
ular sampled time series and can, in theory, handle arbitrary
time gaps between observations.
Experimental Setting: We implemented FlowODE based
on PyTorch1.1.0 and Python3.6 on Ubuntu 16.04 operating
system with a single NVIDIA GeForce GTX 2080ti GPU.
The batch sizeB is default set as 128. The learning rate is set
to 0.0001 at the beginning and decays half every 30 epochs.
ADAM optimization algorithm (Kingma and Ba 2014) is
used to train all baselines model with the setting of β1 =
0.9, β2 = 0.999. In Dopris ODE solver, we set the relative
tolerance rtol as 1e-5 and the absolute tolerance atol as 1e-
5. We run 200 epochs in total during the training stage, and
then verify the model on testing data.
Metrics: We evaluate all methods with three widely used
metrics for time series prediction: Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE).
Inflow Prediction Performance: Table 2 shows the perfor-
mance of different approaches to the inflow prediction of
two reservoirs. We can observe that the proposed FlowODE
model achieves the best results in terms of three metrics.
Classical time series models such as HA, ARIMA, and SVR
perform poorly due to their inability to model non-linear de-
pendencies in inflow time series. SVR and BN, which have
been widely used in inflow prediction, perform worse than
deep learning models such as LSTM and Bi-GRU. This re-
sult demonstrates the superiority of RNNs on learning long-
short term dependencies in time series. However, the vanilla
RNN models can be improved by capturing the stochasticity
of time series data, as done by GRU-VAE, LatentODE, and
our FlowODE. Besides, LatentODE and FlowODE slightly
outperform GRU-VAE, demonstrating the benefit of extend-
ing classical RNNs with continuous dynamics. This also
implies that ODEs allow us to define a generative process
over the inflow time series based on the deterministic evolu-
tion of an initial latent state and improve different time in-

terval predictions. Finally, FlowODE continuously outper-
forms LatentODE because the latter is purposely designed
for sporadically-observed time series such as patient mea-
surements (De Brouwer et al. 2019). However, water inflow
and other time series (e.g., discharge and electricity gener-
ation) are measured systematically at fixed time intervals in
our hydro-stations.
Influence of External Factors:
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Figure 2: Influence of different external factors.

In Figure 2, we individually study the influence of each
factor on the future inflow forecasting. Among the factors,
we find that water level is an essential signal of inflow pre-
diction because it contains implicit but critical information
that cannot be explicitly measured, such as snowmelt and
underground water. Climatic factors such as temperature and
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rainfall contribute inflow prediction, but their impact is lim-
ited because such information often lags behind the reservoir
inflow. We also find that the most critical factor is the out-
flow of the upstream reservoir, e.g., the discharge of PBG
dam contributes significantly for inflow prediction of SXG
that is located downstream of PBG. This result suggests that
the operation of cascaded reservoirs requires overall coordi-
nation and optimization.
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Figure 3: Computation overhead vs. Prediction accuracy.

Computation Cost vs. Prediction Accuracy: As men-
tioned earlier, the ODE solution allows our method to dy-
namically balance the trade-off between prediction accuracy
and the computation cost. As shown in Figure 3(a), the re-
quired function evaluations N increase very intensely at the
beginning, but quickly become stable. By studying the re-
sults depicted in Figure 3(b), we can see that the more eval-
uated points (functions), the lower the prediction error our
model can achieve. This property is typically useful for in-
flow prediction in extreme events (e.g., flood). That is, we
can trade some accuracy for faster response.
Evolution of Latent Factors: As we know, vanilla RNNs
are limited to extracting temporal dependencies. While in
multivariate time series, e.g., the water flow and electric-
ity generation, the correlation between multivariate is com-
plex. In SRNN, we learn the uncertainty of time series
through modeling the stochastic latent variables, which
carry more expressive information and inherent dependen-
cies than deterministic RNNs, as have been observed in pre-
vious works (Fraccaro et al. 2016; Goyal et al. 2017). Fig-

(a) t = 1 (b) t = 24 (c) t = 48 (d) t = 72

(e) t = 96 (f) t = 120 (g) t = 148 (h) t = 168

Figure 4: Latent representation learning in SRNN.

ure 4 visualizes the evolution of latent representations in-
creasing with the hidden states. As more samples fed into
the SRNN, the distribution of latent variables z is gradu-
ally changed from stochastic to a certain Gaussian. Note
that we use a Gaussian to regularize the latent space, which
is simple but effective in our case. However, more complex
and flexible latent space transformations such as normaliz-
ing flows (Rezende and Mohamed 2015) and the more effec-
tive variants (Papamakarios et al. 2019) can be easily used
to replace the diagonal Gaussian.

Discussion
In this work, we present a multi-horizon prediction infer-
ence network FlowODE for reservoir inflow forecasting.
FlowODE consists of a newly designed stochastic RNN,
which overcomes the issue of modeling uncertain latent vari-
ables in classical RNNs. To forecast future inflow volume at
any desired time, we introduce neural ODE solvers to evolve
the latent representation, which bridges the gap between the
nature of continuous flow time series and the underlying dis-
crete neural networks. Experimental results demonstrate the
effectiveness and superiority of the proposed framework in
solving the multi-horizon water inflow prediction.

There are several limitations of the proposed model that
requires further investigation in the future. Although the
dams’ cascade effect has been observed in our experiments,
modeling more dams is non-trivial and its impact is still un-
clear. Moreover, dynamically adjusting the reservoirs’ water
level to maximize hydroelectricity generation’s profit and
optimize our flood control policies and inundation predic-
tion are important ongoing work. Besides, modeling more
complex and flexible latent factors using more sophisticated
statistical approaches such as normalizing flows may im-
prove the inflow prediction performance of FlowODE. Fur-
thermore, we used Euler method and Dopris method as ODE
numerical solvers in SRNN and latent representation, re-
spectively, which can be further improved with more fast
and accurate neural ODE training such as Legendre polyno-
mials and higher-order state approximation (Quaglino et al.
2020).
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