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Abstract

The ability to learn and reason with causal knowledge is a
key aspect of intelligent behavior. In contrast to mere sta-
tistical association, knowledge of causation enables reason-
ing about the effects of actions. Causal reasoning is vital for
autonomous agents and for a range of applications in sci-
ence, medicine, business, and government. However, current
methods for causal inference are hobbled because they use
relatively inexpressive models. Surprisingly, current causal
models eschew nearly every major representational innova-
tion common in a range of other fields both inside and out-
side of computer science, including representation of objects,
relationships, time, space, and hierarchy. Even more surpris-
ingly, a range of recent research provides strong evidence that
more expressive representations make possible causal infer-
ences that are otherwise impossible and remove key biases
that would otherwise afflict more naive inferences. New re-
search on causal inference should target increases in expres-
siveness to improve accuracy and effectiveness.

Introduction
Learning and reasoning about the effects of actions—often
referred to as causal inference—is a central activity of intel-
ligent agents. Causal inference is used in AI to enable learn-
ing and reasoning of intelligent agents in applications such
as robotics, planning, and game playing. Causal inference
is a fundamental tool of essentially all sciences, particularly
those that focus on devising effective interventions, such as
medicine, public health, sociology, and economics. It is also
a direct subject of study in psychology, cognitive science,
statistics, and philosophy. Indeed, it is difficult to think of
a field of human endeavor in which causal inference is not
central.

Given its importance, it is surprising how starkly the goals
of causal inference diverge from the majority of work in ma-
chine learning. Typical work in machine learning constructs
models of statistical associations. Such models allow accu-
rate inferences about unobserved variables (e.g., a class la-
bel) given that new data instances are drawn from the same
distribution as the instances in the training data. In contrast,
causal inference aims to learn a model that allows accurate
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inferences about the effects of explicit changes to the pro-
cess that generated the training data. These changes, often
termed interventions, alter the data generating process in
ways that can be accurately represented as edits to a valid
causal model. That is, valid causal models allow explicit rep-
resentation of interventions and enable accurate inferences
about the effects of those interventions.

Despite the prevailing non-causal focus of machine learn-
ing, a broad array of methods has been developed both
inside and outside of AI that facilitate causal inference
from both experimental and observational data. One class of
methods—often labeled the potential outcomes framework
(POF)—has largely been developed within statistics and the
social sciences and typically focuses on estimating the av-
erage effect of a possible cause on a possible effect (Rubin
2005; Imbens and Rubin 2015). Another class of methods—
sometimes referred to as structural causal models (SCMs)—
has largely been developed within AI and typically focuses
on reasoning about the causal dependencies among a set
of variables and supports a diverse set of inferences (Pearl
2009; Spirtes, Glymour, and Scheines 2000). A rich body
of work has developed around these and other paradigms,
including technical contributions from fields such as philos-
ophy of science, psychology, epidemiology, sociology, and
economics.

Over the past several decades, researchers in causal infer-
ence have developed a range of innovations, including meth-
ods for deriving observable statistical consequences from
classes of causal models (e.g., d-separation), a variety of de-
signs and design elements (e.g., instrumental variable de-
signs (Angrist, Imbens, and Rubin 1996), regression discon-
tinuity designs (Hahn, Todd, and Van der Klaauw 2001)),
practical estimation methods (e.g., G-computation, propen-
sity score matching (Rosenbaum and Rubin 1983), dou-
bly robust methods (Bang and Robins 2005)), algorithms
for learning model structure (e.g., PC, FCI (Spirtes, Gly-
mour, and Scheines 2000), GES (Chickering 2002), MMHC
(Tsamardinos, Brown, and Aliferis 2006), and many others),
and methods for inferring identifiability and adjustment sets
based on partially specified models (e.g., (Pearl 2009)).

Despite these innovations, accurate causal inference re-
mains extremely challenging. Most causal inferences require
overcoming inherent challenges such as non-random treat-
ment assignment, latent confounding, and endogenous se-
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lection bias. In practice, conflicting analyses and errors are
common because different analyses rely on assumptions that
are difficult or impossible to empirically test. Innovations in
causal inference that are particularly valuable are those that
allow practitioners to overcome or check these assumptions.

In this brief paper, I argue that the accuracy and effec-
tiveness of causal inference can be dramatically improved
by addressing long-standing deficiencies in the representa-
tion of causal models. Specifically, existing causal models
omit a range of representational innovations that are com-
mon both inside and outside of computer science, including
representation of objects, relationships, time, space, and hi-
erarchy. While traditional ML has long found ways of re-
ducing more complex representations to simple variable-
based representations (i.e., “feature vectors”), causal mod-
els make higher demands on the representational fidelity of
learned models. These higher demands are due to the cen-
tral task of causal models—valid reasoning under interven-
tion. Specifically, effective causal models accurately rep-
resent the modular structure present in the real-world sys-
tems that they model. That is, interventions should be repre-
sentable as changes to only a small number of model compo-
nents and those changes should not affect the causal mecha-
nisms in the remainder of the model.

In addition, a set of recent research results indicate that
using more expressive representations can directly improve
causal inference. First, more expressive representations can
improve structure learning—the ability to accurately infer
the causal structure among candidate model components.
Second, more expressive representations can be used to re-
duce biases that afflict analyses that use simpler models.
These are described in more detail below.

Example
To help make clear the potential benefits of more expres-
sive representations for causal models, consider the every-
day task of reasoning about the interactions among physical
objects. People employ this form of reasoning in an array of
everyday tasks, such as stacking dishes, climbing stairs, set-
ting down coffee cups, and reorganizing closets. This form
of reasoning also appears in some video games. For exam-
ple, consider the popular game of Angry Birds. In each level
of the game, players use a slingshot to fire projectiles (birds)
at structures consisting of stacked blocks of various shapes
and sizes (see figure 1 for an example level). The goal in
each level is to collapse the structures so that they crush or
otherwise destroy target objects (green pigs). Players receive
points for each target and block that is destroyed and for
each unused projectile.

A video game may seem a peculiar choice for an example,
but we reference Angry Birds for several reasons. First, even
though it is not a real physical system, it exemplifies an ide-
alized form of reasoning about physical causation. Second,
it is a system in which complex causal reasoning and in-
ference is clearly possible. Human players can reason quite
successfully about how the structures will respond to differ-
ent projectile impacts, despite substantial complexity of the
simulated structures and only approximate knowledge of the
key parameters of those structures (e.g., the simulated mass

Figure 1: A sample level of Angry Birds. The slingshot at
left is used to shoot projectiles (birds) at the structures at
right with the goal of destroying the targets (green pigs).

of objects). Human players also rapidly improve their causal
knowledge when new birds, blocks, or other entities are in-
troduced into game levels. Third, it is an environment that
enables repeatable experiments, and thus it is possible to de-
rive ground-truth causal effects. Such environments are dif-
ficult to find in practice, which is one reason that empirical
evaluation of causal inference methods has proven so diffi-
cult (Dorie et al. 2019; Gentzel, Garant, and Jensen 2019).
Finally, Angry Birds has spawned a long-running competi-
tion at AAAI and IJCAI in which autonomous agents com-
pete in their ability to play the game (Renz et al. 2016).

Despite the ability of humans to play Angry Birds effec-
tively, the game differs quite substantially from the systems
that can be successfully modeled by nearly all current meth-
ods for causal inference. Accurately modeling the causal
structure of even a single level of Angry Birds using either
the potential outcome framework or structural causal models
would be difficult or impossible, and learning the structure
and parameters of that model from limited data would be
even more challenging. Why this gap?

Modularity: A Representational Imperative
One answer can be found in one of the most foundational
and yet elusive concepts in causal inference: Modularity.
Modularity posits that a causal system consists of compo-
nents whose underlying mechanisms are invariant to the
mechanisms of other components (Pearl 2009). Thus, in-
tervening in the mechanism of one component will not af-
fect the manner in which other components respond, even
though that intervention may indirectly change the state of
those other components. Modularity is also referred to as
autonomy (Aldrich 1989), causal invariance (Peters, Janz-
ing, and Schölkopf 2017), and independent causal mecha-
nisms (Schölkopf 2019). For a given set of interventions,
valid causal models have a structure that correctly reflects
the modularity of the causal system they are intended to rep-
resent.

For example, consider the case of objects in Angry Birds.
Most human observers would correctly assume that inter-
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vening to directly change an attribute of a given block (e.g.,
its mass, position, or velocity) would not affect the causal
mechanisms of another block (e.g., how that block responds
to a given force). While the intervention may indirectly af-
fect the position or velocity of another block (because of
some causal chain of interactions), it will not affect the fun-
damental manner in which that other block responds to ex-
ternal forces.

Conversely, imagine a causal model that implicitly as-
sumed a specific gravitational constant in its definition of the
mechanisms by which blocks interacted. If an intervention
altered the gravitation field, then the causal mechanisms of
every block in the model would need to change for the model
to accurately infer the effect of this intervention. This is one
reason why physicists use mass rather than weight as a fun-
damental attribute for describing objects. Mass is ”modular”
with respect to gravitation.

Causal models that exhibit modularity have several ad-
vantages:

• Intervention — Interventions can be represented as min-
imal changes to a model rather than requiring wholesale
redefinition. For example, an intervention on the mass of
a block may have implications for the position or velocity
of other blocks, but does not require redefining the mech-
anism of those interactions.

• Composition — Components of the model can be recom-
bined in new ways without needing to redefine the entire
model. For example, blocks can be assembled into a com-
pletely new physical structure and yet they still constitute
a valid model.

• Novelty — Entirely new components can be introduced
into a model without requiring the redefinition of exist-
ing components. For example, an iron block can be in-
troduced into the game without requiring redefinition of
wood and stone blocks.

Modularity has long been identified as a key property of
SCMs. Specifically, SCMs consist of a set of conditional
probability distributions (CPDs) that fully define the model.
It is a formal property of an SCM that each CPD rep-
resents an independent causal mechanism—intervening on
one CPD does not alter another CPD. In an accurate SCM,
the CPDs are defined such that they match the modularity
of the causal system that they model. However, the extent
to which this correspondence holds is entirely a matter of
the efficacy of the learning algorithm, the extent to which
an appropriate set of variables has been defined, and the ex-
tent to which the SCM formalism can accurately represent
the modularity of the system being modeled. This last issue
is our focus here: Can existing modeling formalisms accu-
rately represent the modularity necessary to reason about the
effects of interventions in a wide variety of causal systems?

Expressiveness of Current Causal Models
Unfortunately, both the potential outcomes framework and
structural causal models use an extremely limited model
representation. By far the most common model represen-
tation in these two frameworks is propositional, in which

data instances correspond to flat feature vectors. Vectors
represents the attributes of a given type of entity, often re-
ferred to as a unit of analysis (e.g., person, organization,
purchase). Typically, each instance of a feature vector is as-
sumed to be marginally independent of every other instance.
It is worth nothing that data analysts employing these propo-
sitional representations sometimes use units of analysis that
consist of multiple entities (e.g., married couples or a stu-
dent and their school) or features that exist over time and
space (e.g., temporally separated treatments and outcomes),
but this complexity is almost never explicitly represented
within the model representation itself. For example, struc-
tural causal models are sometimes represented with nesting
plates (representing hierarchical structures of objects), but
such plates are merely a convenient device for producing
a “ground graph” that is analyzed as if the original object
structure did not exist.

Despite this, researchers who work primarily with struc-
tural causal models have long argued that a key capability of
this model class is its ability to explicitly represent complex
patterns of causal dependence and allow automated reason-
ing about that dependence. Indeed, knowledge representa-
tion and reasoning are some of the most important intellec-
tual contributions that AI can bring to causal inference. Yet
many of the key representational innovations of researchers
inside and outside of AI are not yet used in causal modeling.

These representational innovations include:
• Objects — Multiple types of entities with associated at-

tributes (e.g., birds, blocks, pigs, and platforms);
• Relations — Discrete relationships that relate two or more

objects to each other (e.g., loaded-in-slingshot, supported-
by), perhaps with associated attributes;

• Time — Changing sequences of attribute values and du-
rations of existence of objects and relations (e.g., the se-
quence of events produced by a single shot);

• Space — Embeddings of objects within spatial fields to
indicate smoothly varying attributes such as relative posi-
tion, gravitation, explosive force, etc.; and

• Hierarchy and Composition — Combinations of all of the
above that can be represented as objects, relations, etc.
unto themselves (e.g., multi-object platforms).
In eschewing these innovations, causal inference lags be-

hind a surprising array of other fields that argue implicitly
and explicitly for the utility of these representational inno-
vations. For example, researchers in psychology and cogni-
tive science argue for the importance of the object concept,
temporal reasoning, and spatial reasoning as key stages in
infant development. Similarly, philosophers have long ar-
gued for the fundamental importance of objects, relation-
ships, and time in human reasoning, and philosophers of
science have more recently explored the importance of rea-
soning about causal mechanisms in terms of how entities
interact over time and space (Craver and Darden 2013; Il-
lari and Williamson 2012; Machamer, Darden, and Craver
2000). A large number of practical methods for causal infer-
ence in social science reference objects, relationships, and
time, including multi-level models (Gelman 2006; Goldstein
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2010), within-subject designs (Greenwald 1976), interrupted
time-series designs (McDowall et al. 1980), and difference-
in-difference designs. Researchers in sub-fields of artifi-
cial intelligence, of course, have long argued for the utility
of these representational innovations, including researchers
in knowledge representation and reasoning, statistical rela-
tional learning (Getoor and Taskar 2007), object-oriented
MDPs in reinforcement learning (Diuk, Cohen, and Littman
2008), and first-order and higher-order logics. Finally, other
areas of computer science have long used these innovations,
including work in type theory and object-oriented methods
in programming languages and relational, temporal, and spa-
tial models in databases.

Advantages of Expressive Representations
In addition to these general arguments for pursuing more ex-
pressive representations for causal models, there is a grow-
ing set of research results that demonstrate how increasing
the expressiveness of causal models can enable structure
learning and decrease bias. Structure learning concerns the
specification of which components of a model directly cause
other components. In the context of SCMs, methods for
structure learning determine which variables directly cause
which other variables, thus defining the form of the condi-
tional probability distributions of the model.

Perhaps the best known structure learning results are
those regarding small numbers of variables within the SCM
paradigm. Given data about only two random variables X
and Y , the direction of the causal dependence between
them cannot be determined from observational data under
standard assumptions.1 However, given a third variable Z,
much more information about the likely causal structure
can be learned from observational data (Spirtes, Glymour,
and Scheines 2000). As another example, practitioners of
causal inference have long exploited temporal dependence
to constrain possible causal dependencies by assuming that
an event that occurs before a second event can only be a
cause, but not an effect, of the second event.

More recently, researchers have discovered new ways in
which structure learning can be enabled by using more ex-
pressive model classes than those typically used in POF
and SCMs. Explicit representation of multiple types of ob-
jects and their relationships can allow the direction of causal
dependence to be inferred whereas it would not be in-
ferrable with only a flat, non-relational representation (Ar-
bour, Marazopoulou, and Jensen 2016; Maier 2014). Hier-
archical structure among entities (e.g., a company that em-
ploys multiple employees) can also be used to enable struc-
ture learning despite the existence of latent confounders
(Jensen, Burroni, and Rattigan 2019; Witty et al. 2020). In
both of these cases, variables alone are insufficient to make
these causal dependencies discoverable.

In other work, researchers have discovered ways in which
highly expressive representations can reduce the bias of es-

1Some relatively recent work has shown that, under certain very
specific circumstances, the conditional distributions of the alterna-
tive models provide evidence about the likely direction of depen-
dence (Peters, Janzing, and Schölkopf 2017).

timates regarding specific causal dependencies. Said dif-
ferently, without these more expressive representations, the
estimated causal effects would be irretrievably biased. In
one analysis (Maier, Marazopoulou, and Jensen 2014), re-
searchers showed that large numbers of causal dependencies
would be judged to be present (when in fact they were ab-
sent) unless the object-relational structure of a given data
set was considered and the reasoning strategies (d-separation
judgments) were adapted to this more expressive represen-
tation. In very recent work (Lee and Ogburn 2020), re-
searchers showed that when object-relational structures ex-
isted, but were not represented and the effects accounted
for, various standard estimators of causal effect could be
strongly biased.

Conclusions
Researchers have long sought to improve the accuracy and
utility of methods for causal inference. However, nearly
all of the research directions explored over the past sev-
eral decades have assumed that conventional representa-
tions, based on variables alone, are sufficient to enable im-
provements. Recent results of several different studies now
imply that more expressive representations of causal models
can enable important new methods to improve identifiabil-
ity and reduce bias. More work on this crucial direction is
needed.
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