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Abstract

Game theory is typically used to model the interaction among
(software) agents in multiagent systems and, therefore, is a
key topic at leading AI conferences. Game-theoretic models,
however, are often based on the assumption that agents are
perfectly rational and narrowly selfish and are interested only
in maximizing their own gains, no matter what the costs to
the other agents are. This summary paper presents various
ways of introducing certain notions of altruism into existing
game-theoretic models in both noncooperative and coopera-
tive games, in the hope that simulating altruistic behavior in
AI systems will make AI better suit real-world applications—
and thus may make the real world a better place.

Introduction
The breathtakingly rapid development of artificial intelli-
gence (AI) is largely based on mimicking—by means of
tools, methods, and insights from computer science, mathe-
matics, and other fields of science—human intelligence and
human properties, attributes, and behavior as individuals and
in society. For example, the explosive recent successes of
machine learning and deep learning, a true success story
within AI, have been possible only by mimicking the human
brain through neural networks1 and by machines acquiring
the human ability to learn from previous experiences.

Other subareas of AI are concerned with using game the-
ory, social choice theory, voting, and economic paradigms
so as to model interaction, coordination, collaboration, and
collective decision-making among the agents in a multiagent
system. For instance, social choice mechanisms and vot-
ing have been widely and successfully used in multiagent
systems and AI for preference aggregation and collective
decision-making in societies of (software) agents.

The rise of computational social choice (COMSOC, for
short; see, e.g., the comprehensive textbooks edited by
Brandt et al. (2016) and Rothe (2015) as well as the surveys
written by Chevaleyre et al. (2007), Bredereck et al. (2014),
Hemaspaandra (2018), and Rothe (2019a)) is another well-
known success story within AI, as witnessed by the fact that
numerous important COMSOC results have been presented
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1An interpretation that some researchers disagree with, though.

at leading AI conferences in recent years, including AAAI,
AAMAS, ECAI, and IJCAI. Interaction among agents in a
multiagent system is typically modeled via game-theoretic
means in AI. From the early beginnings of (noncooperative)
game theory due to von Neumann and Morgenstern (1944),
a player (or agent) in a game has been viewed as a homo
economicus: Such players are perfectly rational, narrowly
selfish, and interested only in maximizing their own gains,
no matter what the costs to the other players are. In spirit,
this assumption is somewhat related to Darwin’s thesis of
“survival of the fittest,” where “survival” essentially is mea-
sured by the ability of reproduction, propelling the biologi-
cal evolution of the human species. However, even in terms
of biology and evolution, there are reasonable doubts if self-
ishness alone (in the sense that more aggressive behavior
yields more offspring) is really the key to success.

Recently, Hare and Woods (2020) countered Darwin’s
thesis with their “survival of the friendliest.” Specifically,
one of their many arguments is that of the two species mak-
ing up the genus Pan among the great apes, bonobos and
chimpanzees, the bonobos benefit from their much friendlier
behavior: The most successful male bonobo has more pro-
genies than the most successful male chimpanzee, i.e., has
a higher reproduction rate. Hare and Woods (2020) also ar-
gue that the evolutionary supremacy of the human species is
mainly due to their friendly behavior, which made it possible
for them to form larger social groups and even societies.

Now, if we agree that AI is best off when mimicking natu-
ral life and simulating real-world human behavior, the homo
economicus from the early days of game theory is obsolete
and better models are needed. Indeed, relentlessly aiming
at one’s own advantage and maximizing one’s own utility
regardless of the consequences for others in fact not only di-
minishes the individual gains of the agents, but it may also
harm the society of agents in a multiagent system as a whole.

This paper presents various ways of introducing altruism
into existing game-theoretic models, focusing both on non-
cooperative and cooperative game theory. This adds to previ-
ous approaches of taking ethics, psychology, emotions, and
behavioral dynamics into consideration in collective deci-
sion-making (Regenwetter et al. 2006; Popova, Regenwet-
ter, and Mattei 2013; Rothe 2019b). The purpose of this pa-
per is to make a case for better integrating altruism into AI
systems and AI research.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)
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Altruism in Noncooperative Games
Game theory more or less started with the book by von Neu-
mann and Morgenstern (1944) who explored noncoopera-
tive games in which all players are on their own, competing
with each other to win the game and to maximize their own
profit. The simplest noncooperative games are called strate-
gic games in normal form (Borel 1921; von Neumann 1928)
where each player can choose one out of a finite set of possi-
ble strategies, and a gain vector gives the gains of all players
depending on which strategy was chosen by each of them.
For more background on noncooperative game theory, the
reader is referred, e.g., to the book by Nisan et al. (2007) and
the book chapter by Faliszewski, Rothe, and Rothe (2015).

Altruism in games has been considered mainly for non-
cooperative games to date. We give a short overview in the
remainder of this section.

Social Context Games
Ashlagi, Krysta, and Tennenholtz (2008) introduced social
context games by embedding a strategic game in a social
context that is modeled by a graph of neighborhood among
players and aggregation functions. It has the same players
and strategies as the underlying strategic game. However,
while social context games may not capture an actual no-
tion of altruism, the players’ utilities in such a game do
not depend only on their payoffs in the underlying strategic
game but also on the neighborhood graph and the aggrega-
tion functions that express a social context. The goal is to
explore the influence a social context may have on the prop-
erties of the underlying strategic game.

Well-known examples of social context games are rank-
ing games and coalitional congestion games, as explained
below. Ashlagi, Krysta, and Tennenholtz (2008) focus on
resource selection games (a famous subclass of congestion
games2) where there are players and resources, each player
selects a resource, and each player’s costs are a nondecreas-
ing function of the number of players who have chosen this
player’s selected resource. They ask under which conditions
there exist pure Nash equilibria (see Footnote 2 for an infor-
mal definition) when resource selection games are embed-
ded into one of the following social contexts:

• Rank competition: Players are partitioned into cliques and
compete on their relative payoff within each clique. This
generalizes ranking games (Brandt et al. 2009), which are
based on graphs forming only single cliques.

• Best-member collaboration: Given a social network, play-
ers care about the highest payoff for themselves or one of
their neighbors. This is akin to congestion games in which
players may choose several resources and care about the
one with the best performance.

• Min-max collaboration: Given a social network, players
seek to maximize the worst payoff for themselves or one

2A fundamental property of congestion games is that they al-
ways have a Nash equilibrium in pure strategies, i.e., there always
exists a profile of pure strategies such that no player has an incen-
tive to deviate from her strategy in the profile, provided the other
players also stay with their strategies in the profile.

of their friends. This requirement is similar in spirit to
min-max fairness.

• Surplus collaboration: Given a social network, players
seek to maximize the average payoff for themselves and
their friends. This requirement is similar in spirit to
coalitional congestion games (Hayrapetyan, Tardos, and
Wexler 2006; Kuniavsky and Smorodinsky 2011).

Hoefer et al. (2011) also consider players being embedded
in a social network and assume that certain constraints spec-
ify which sets of coalitions may jointly deviate from their
actual strategies in the game. When doing so, however, they
are considerate not to hurt others: They ignore potentially
profitable group deviations whenever those cause a decrease
of the gains of their neighbors in the network. Exploring
the properties of considerate equilibria in resource selec-
tion games, they show that there exists a state that is stable
against selfish and considerate behavior at the same time.

Anagnostopoulos et al. (2013) study how the kind of al-
truistic behavior of players in social context games can make
them in fact more inefficient, in the sense that the price of
anarchy (relating the worst-case cost of a Nash equilibrium
to the one of an optimal outcome) can thus be increased.

Bilò et al. (2013) apply the model of social context games
by Ashlagi, Krysta, and Tennenholtz (2008) to linear con-
gestion games and Shapley cost sharing games with the ag-
gregation functions min, max, and sum (or average). They
characterize the graph topologies modeling the social con-
texts in these cases such that the existence of pure Nash equi-
libria is guaranteed. They also establish (asymptotically) op-
timal bounds on the price of anarchy in many of these cases
and they extend their results to multicast games, an impor-
tant subclass of Shapley cost sharing games.

Congestion Games
Hoefer and Skopalik (2013) consider atomic congestion
games: In the standard case, as sketched above, there are my-
opic selfish players and a set of resources which each have
a nondecreasing delay function; each player chooses a strat-
egy by selecting or allocating a subset of resources (e.g., a
path in a network) and experiences a delay corresponding
to the total delay on all selected resources, which depends
on the number of players that have allocated any of these
resources. The goal of each player is to minimize the expe-
rienced delay. A stable state in this game is expressed by a
pure Nash equilibrium (see Footnote 2), which here means
that every player allocates exactly one subset of resources,
and no player can decrease the experienced delay by unilat-
erally deviating from the chosen strategy.

Now, altruism is introduced by Hoefer and Skopalik
(2013) into such games as follows. They assume that the
players are partly selfish and partly altruistic, which is for-
malized by an altruism level βi ∈ [0, 1] for each player i,
where βi = 0 means i is purely selfish and βi = 1 means i
is purely altruistic. These players’ incentive then is to opti-
mize a linear combination of personal cost (their individual
experienced delay) and social cost (the total cost—i.e., ex-
perienced delay—of all players).
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Hoefer and Skopalik (2013) then study under which con-
ditions there exist pure Nash equilibria in various types of
such games. For example, in symmetric singleton games
where only one resource is chosen by each player and all
players have the same strategy space available, pure Nash
equilibria might not exist, even when players are purely al-
truistic or purely selfish. However, the existence problem
can be solved in polynomial time, and a Nash equilibrium
with best or worst social cost, if some exists, can be deter-
mined efficiently for any population of players with a con-
stant number of altruism levels. For asymmetric singleton
games with different strategy spaces for the players, on the
other hand, the existence problem for pure Nash equilibria
is NP-hard. Perhaps a bit surprisingly, Hoefer and Skopa-
lik (2013) show that there is a potential function if all delay
functions are affine. Consequently, pure Nash equilibria ex-
ist and better-response dynamics converge in this case.

To answer the question of how many altruists are required
to stabilize a social optimum, Hoefer and Skopalik (2013)
also show that optimal stability thresholds (the minimum
number of altruists such that there exists an optimal Nash
equilibrium) and optimal anarchy thresholds (the minimum
number of altruists such that every Nash equilibrium is opti-
mal) can be computed in polynomial time.

Chen et al. (2014) also study this model of altruism in
congestion games but extend it to nonatomic such games.
While in atomic congestion games, players have a non-
negligible size (which means that using or not using a re-
source by even one player will affect the cost—or delay—
perceptibly), players in nonatomic congestion games are as-
sumed to be infinitesimally small and there is a continuum of
them (which means that using a resource by a single player
will have no measureable effect on the cost; only the accu-
mulation of players using it will affect its cost).

Chen et al. (2014) propose that instead of using a convex
combination of (1 − βi) times player i’s personal cost (or
payoff) and βi times the social cost (or social welfare) as in
atomic congestion games, for nonatomic congestion games
the appropriate measure is to use the derivative of the so-
cial cost or social welfare. Their main modeling contribution
is to provide a general definition that is applicable to other
classes of games as well, such as fair cost-sharing games
(the main difference is that if many players use a resource,
instead of increasing its cost, this will actually decrease it
by contributing towards its purchase: the fixed cost of a re-
source can be split among all individuals using it) and valid
utility games (where, again, players select sets of resources
but instead of seeking to minimize costs, they now seek to
maximize the utility they each individually derive from the
set of resources selected by all players jointly).

Strategic Games
Apt and Schäfer (2014) consider strategic games and in-
troduce the notion of selfishness level, which are based on
the “altruistic games” due to Ledyard (1995) (and, more re-
cently, De Marco and Morgan (2007)) and measures the dis-
crepancy in such games between the social welfare in a Nash
equilibrium and in a social optimum. That is, they consider
the smallest fraction of social welfare that each player must

be offered so as to achieve that a social optimum can be real-
ized in a pure Nash equilibrium. They show that the selfish-
ness level is distinct from the price of stability and the price
of anarchy (Nisan et al. 2007) and that it remains invariant
under linear transformations of the gain functions.

The selfishness level can be finite (e.g., in finite ordinal
potential games) or infinite (e.g., in weakly acyclic games).
Apt and Schäfer (2014) establish explicit bounds on the self-
ishness level of fair cost-sharing games and linear conges-
tion games and determine the selfishness levels of specific
well-studied strategic games, such as the n-player prisoner’s
dilemma, the n-player public goods game, and the traveler’s
dilemma game. They show that other specific games like
Cournot competition (which is an infinite ordinal potential
game), tragedy of the commons, and Bertrand competition
have an infinite selfishness level. Due to space restrictions,
these interesting well-known games cannot be defined here
in detail.

Social Contribution Games
Rahn and Schäfer (2013) introduce another class of games,
which they call social contribution games. They are moti-
vated by the fact that, as we have seen above, altruistic be-
havior (i.e., taking other players’ preferences or utilities into
account when making a decision) may actually render equi-
libria more inefficient (e.g., in congestion games) and thus
may harm society as a whole (Anagnostopoulos et al. 2013).
This is not the case for valid utility games, though, as Chen
et al. (2014) have shown that the inefficiency of equilibria
remains unaltered under altruistic behavior in these games.
Therefore, a question naturally arises: What is it that causes
or influences the inefficiency of equilibria in games with al-
truistic players?

In social contribution games, players’ individual costs are
set to the cost they cause for society just because of their
presence, thus providing a useful abstraction of games with
altruistic players when the robust price of anarchy is to be
analyzed. Rahn and Schäfer (2013) show that social con-
tribution games are what they call altruism-independently
smooth, which means that the robust price of anarchy in
these games remains unaltered under arbitrary altruistic ex-
tensions. In particular, they develop a general reduction tech-
nique by which the problem of establishing smoothness for
an altruistic extension of an underlying game can be trans-
ferred into a corresponding social contribution game. This
reduction can be used whenever the underlying game re-
lates to a canonical social contribution game by satisfy-
ing a simple “social contribution boundedness” property,
which means that the direct, personal cost of each player
is bounded by this player’s cost in the corresponding social
contribution game.3

A variety of well-known classes of games, including con-
gestion games and valid utility games, fulfill this condi-
tion and can thus be analyzed via this reduction technique,
which establishes tight bounds on the robust price of anar-
chy of their altruistic extensions. Regarding the more distin-

3A slightly stronger condition is required to hold for the friend-
ship model from social context games.
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guished friendship setting from social context games, Rahn
and Schäfer (2013) show that this model is amenable to their
reduction technique whenever the underlying game satisfies
three additional natural properties.

Altruism in Cooperative Games
In a cooperative game, players may work together by form-
ing groups, so-called coalitions, and may take joint actions
so as to realize their goals better than if they were on their
own. In the cardinal setting, a utility function maps each pos-
sible coalition to some (usually nonnegative) real value; in
the ordinal setting, players simply rank coalitions according
to their preferences. If a coalition structure (i.e., a partition
of the players into coalitions) has formed, the question arises
how stable it is, i.e., whether some players may have an in-
centive to leave their coalition and to join another one. There
are plenty of special types of cooperative games and of sta-
bility notions some of which we will encounter below. For
more background on cooperative game theory, the reader is
referred, e.g., to the books by Peleg and Sudhölter (2003)
and Chalkiadakis, Elkind, and Wooldridge (2011) and to the
book chapter by Elkind and Rothe (2015).

Social Distance Games
The world is small. Based on his psychological experiments,
Milgram (1967) formulated the famous “six degrees of sep-
aration” hypothesis, which roughly speaking says that, on
average, any two people in the world are connected by a
path of length six. Motivated by this research, Brânzei and
Larson (2011) introduced their social distance games as
a family of coalitional games with nontransferable utility.
Using a graph-theoretic approach with vertices represent-
ing players, they define the utility of players by measuring
their (shortest-path) distance to the other members of their
coalition. While this is not actually a notion of altruism,
it does correspond to the principle of homophily (McPher-
son, Smith-Lovin, and Cook 2001), which says that people
tend to form communities with similar others, so similarity
breeds connection. Mathematically, the players’ similarity
with the other members of their coalition is expressed as the
inverse social distance, indicating the players’ centrality in
them. Utility thus is a variant of closeness centrality in a net-
work and has, as Brânzei and Larson (2011) show, a number
of desirable properties reflecting the players’ social nature.
Therefore, social distance games are important to research
on social and economic networks (Jackson 2008), which
themselves are central to many AI applications.

Finding a coalition structure that maximizes utilitarian so-
cial welfare in social distance games is NP-hard, which is
why Brânzei and Larson (2011) provide an algorithm that
approximates the maximum utilitarian social welfare within
a factor of two in such games. They also investigate the sta-
bility notion of the core4 in social distance games and show
that core stable coalition structures have small-world char-
acteristics (i.e., most vertices can be reached from any other

4A coalition structure is in the core if there is no blocking coali-
tion, i.e., no coalition B whose members would be better off leav-
ing their coalition in the coalition structure and joining B instead.

vertex by only a few steps through intermediate vertices).
Relatedly, they analyze the notion of stability gap (Brânzei
and Larson 2009) for social distance games, which is de-
fined for games with a nonempty core and measures the loss
of social welfare that comes from being in the core. The sta-
bility gap can be seen as an analogue of the notions of price
of stability and price of anarchy (Nisan et al. 2007).

Social distance games are related to the general frame-
work of hedonic games, which we consider next.

Hedonic Games
Hedonic games are cooperative games with nontransferable
utility that were originally proposed by Drèze and Green-
berg (1980) and then formally modeled by Banerjee, Kon-
ishi, and Sönmez (2001) and Bogomolnaia and Jackson
(2002). In such coalition formation games, players have (or-
dinal) preferences over the coalitions they can be a member
of. Hedonic games have been thoroughly studied in the past
decade and have generated a rich body of results. For more
background on hedonic games, the reader is referred to the
book chapters by Aziz and Savani (2016) and Elkind and
Rothe (2015) and to the survey by Woeginger (2013a).

Since every player in a hedonic game needs to rank (by
a weak order) exponentially many (in the number of play-
ers) coalitions, it is crucial to find compact representations
for these games. Among the most important representations
of hedonic games are: the individually rational encoding
by Ballester (2004), hedonic coalition nets due to Elkind
and Wooldridge (2009), the singleton encoding (Cechlárová
and Romero-Medina 2001), the additive encoding (Sung and
Dimitrov 2007, 2010; Aziz, Brandt, and Seedig 2013; Woeg-
inger 2013b), the fractional hedonic games by Aziz et al.
(2019) (see also, e.g., the work of Bilò et al. (2014; 2015)),
boolean hedonic games (Aziz et al. 2016; Peters 2016), the
friends-and-enemies encoding (Dimitrov et al. 2006; Sung
and Dimitrov 2007; Rey et al. 2016; Nguyen et al. 2016), the
anonymous encoding (Ballester 2004; Darmann et al. 2018),
and FEN-hedonic games (where FEN stands for “friends,
enemies, and neutral players”) with preferences encoded us-
ing the polarized responsive principle (Lang et al. 2015;
Rothe, Schadrack, and Schend 2018; Kerkmann and Rothe
2019; Kerkmann et al. 2020).

Nguyen et al. (2016) introduced the notion of altruism in
hedonic games, based on the friends-oriented extension of
the players’ preferences (Dimitrov et al. 2006; Sung and
Dimitrov 2007): Every player partitions the other players
into a set of friends and a set of enemies, and among any two
coalitions containing a player i, the one with more friends of
i’s is preferred by i; if they both contain the same number of
i’s friends, the one with fewer of i’s enemies is preferred
by i; and if both coalitions contain the same number of i’s
friends and the same number of i’s enemies, i is indiffer-
ent between them. Like social distance games, such hedo-
nic games can be compactly represented by an undirected
graph whose vertices are the players and whose edges ex-
press the friendship relations, which are assumed to be sym-
metric. This graph is called a network of friends.

Specifically (and informally stated), Nguyen et al. (2016)
propose three degrees of altruism in hedonic games, where
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a player i’s utility for coalitions containing i is used as a
measure to compare, or rank, any two coalitions A and B:

1. Selfish-First (SF) Preferences: Player i first looks at
which of A or B is preferred friend-orientedly, and if and
only if i is indifferent betweenA andB, i asks her friends
in A and B for a vote by looking at these friends’ average
utilities (resulting from the friend-oriented extension) in
each of the two coalitions.

2. Equal-Treatment (EQ) Preferences: Player i treats her
own and her friends’ utilities (again according to the
friend-oriented extension) equally when taking the aver-
age in both coalitions.

3. Altruistic-Treatment (AL) Preferences: Player i first
looks at her friends’ average utilities (again resulting from
the friend-oriented extension) in each of the two coali-
tions, and if and only if they are indifferent between A
and B, i looks at her own friend-oriented utility for A and
B to make the decision.

These three degrees of altruism define three types of pref-
erences in hedonic games that better help an agent to make
her decision as to which coalition to join, since one way
or the other also her friends’ opinions (provided they be-
long to those coalitions) are taken into account. It can be ex-
pected that working in a happier environment (the coalition
she joins) will make her happier herself.

Nguyen et al. (2016) then studied various well-known
properties and stability notions under these three degrees
of altruism in hedonic games, which can be informally de-
scribed as follows. A coalition structure Γ is said to be in-
dividually rational if no player prefers being alone to being
in her current coalition in Γ; individually stable if no player
prefers moving from her current to another coalition in Γ
(without harming any player in that coalition); contractually
individually stable if no player prefers moving from her cur-
rent to another coalition in Γ (without harming any player
in the new coalition by joining nor any player in the old
coalition by leaving); Nash stable if no player prefers an-
other coalition to her current coalition in Γ; core stable if no
nonempty coalition B blocks Γ, i.e., there is no nonempty
coalition B whose members all would prefer being in B to
being in their current coalitions in Γ; strictly core stable if
no coalition B weakly blocks Γ, i.e., there is no coalition
B with at least one player who prefers being in B to being
in her current coalition in Γ, while the other members of B
do not prefer their current coalitions in Γ to B (i.e., they
prefer B or are indifferent); popular if for every other coali-
tion structure ∆, a weak majority of players prefer Γ to ∆;
strictly popular if for every other coalition structure ∆, a
strict majority of players prefer Γ to ∆; and perfect if no
player prefers any other coalition structure to Γ.5

Nguyen et al. (2016) investigated the verification and the
existence problem for the three degrees of altruism in hedo-
nic games in terms of their computational complexity. Veri-
fication means that, given a hedonic game (by its network of
friends) and a coalition structure Γ for it, we ask whether Γ

5Perfectness is also called wonderful stability; see, e.g., (Woeg-
inger 2013a; Rey et al. 2016; Schlueter and Goldsmith 2020).

satisfies any one of the above stability notions. In the exis-
tence problem, we are given a hedonic game (by its network
of friends) and ask whether there exists some coalition struc-
ture satisfying any one of these stability notions. Nguyen
et al. (2016) established the following results:

• For the four notions of stability regarding single-player
deviations (individual rationality, individual stability, con-
tractually individual stability, and Nash stability), they
showed that both verification and existence can be solved
in polynomial time (where the latter is trivial in each case,
as there always exists a coalition structure satisfying the
corresponding property).

• For stability regarding group deviations (core stability and
strict core stability), only upper bounds are known: Ver-
ification is in coNP under all three degrees of altruism,
whereas existence is trivial under selfish-first preferences
and is in the second level of the polynomial hierarchy
(Stockmeyer 1976) for the other two degrees of altruism.

• Popularity and strict popularity yield the same upper
bounds except that the existence problem is only known
to be in the second level of the polynomial hierarchy, yet
for strict popularity under selfish-first preferences Nguyen
et al. (2016) showed that the verification problem is even
coNP-complete and the existence problem coNP-hard.

• For perfectness, finally, verification is polynomial-time
solvable under selfish-first preferences and in coNP under
the other two degrees of altruism, and the existence prob-
lem is polynomial-time solvable under selfish-first pref-
erences, in coNP under equal-treatment preferences, and
at least known not to be trivial under altruistic-treatment
preferences.

Based on the work by Nguyen et al. (2016), Schlueter and
Goldsmith (2020) introduced super altruistic hedonic games
and studied them with respect to various stability notions. In
their model, friends have a different impact on a player based
on their distances in the underlying network of friends, just
as in the social distance games by Brânzei and Larson (2011)
that we discussed above. In addition to showing that both ex-
istence and verification for strict popularity are coNP-hard
in super altruistic hedonic games as well, they also show
that verification for core stability and strict core stability are
coNP-hard in such games and, interestingly, that existence
for strict core stability and perfectness are DP-hard in such
games (just as Rey et al. (2016) show for these problems in
enemy-oriented hedonic games), where DP is the class “Dif-
ference NP,” introduced by Papadimitriou and Yannakakis
(1984) as the class of problems that can be written as the
difference of two NP problems.

Wiechers and Rothe (2020) consider an analogue of egal-
itarian social welfare6 by replacing the average by the min-

6Remotely related is the work of Monaco, Moscardelli, and Ve-
laj (2018; 2019) who study “hedonic games with social context”
(which, in fact, are nonhedonic games based on additive separable
utilities, an altruism factor, and a social network, and the players’
utilities are the sum of their own utilities and the utilities of their
friends in the network, the latter weighted by the altruism factor)
as well as modified fractional hedonic games (which behave qual-
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imum in the definitions of the same three degrees of al-
truism studied by Nguyen et al. (2016). The correspond-
ing minimum-based variants of altruistic hedonic games are
investigated in terms of the above notions of stability, and
the related decision problems in terms of their computa-
tional complexity. Wiechers and Rothe (2020) show that
some results for altruistic hedonic games (in the sense of
Nguyen et al. (2016)) also hold for their minimum-based
variants of such games: For strict popularity, verification
is coNP-complete and existence coNP-hard under selfish-
first preferences. In addition, they can strengthen some of
the results of Nguyen et al. (2016) for the minimum-based
counterparts: For strict popularity, verification is coNP-
complete and existence coNP-hard under equal-treatment
and altruistic-treatment preferences.

Coalition Formation Games
What makes a hedonic game hedonic is that the players’
utilities depend on their own coalition alone. Kerkmann and
Rothe (2020) drop this restriction and extend the definition
of the above three degrees of altruism due to Nguyen et al.
(2016) to coalition formation games in general. To motivate
this, they look at the network of four friends that forms a
path 1 —– 2 —– 3 —– 4: Player 1 is friends with player 2,
2 with 3, and 3 with 4. Consider the coalition structures
Γ = {{1, 2, 3}, {4}} and ∆ = {{1, 2, 4}, {3}} in which
players 3 and 4 are swapped. Under friend-oriented prefer-
ences, player 1 is indifferent between coalitions {1, 2, 3} and
{1, 2, 4} because they both contain one of 1’s friends and
one of 1’s enemies. Under the altruistic hedonic preferences
of Nguyen et al. (2016), however, 1 cares for her friend 2
being friends with 3 but not with 4 and thus prefers {1, 2, 3}
to {1, 2, 4} and Γ to ∆. Now suppose that 1 is falling out
with 2 (over him calling her boring and spending the week-
end with his buddy 3 and not with her—this is not a serious
thing, she still is friends with 2, so the network of friends
remains unchanged; still, she wants to be alone for a while).
So Γ and ∆ are changed to Γ′ = {{1}, {2, 3}, {4}} and
∆′ = {{1}, {2, 4}, {3}}. Should 1 still behave altruistically
towards her friend 2? Kerkmann and Rothe (2020) guess so!
However, under any hedonic preference relation, 1 must dis-
regard {2, 3} and {2, 4} which do not contain 1, and so 1
must be indifferent between between Γ′ to ∆′, simply be-
cause 1’s hedonism requires her to care for her own coalition
alone. Indeed, this shows the tension between altruism (car-
ing for one’s friends) and hedonism (caring only for mem-
bers of one’s own group).

Another example of Kerkmann and Rothe (2020) shows
that under altruistic treatment in the sense of Nguyen et al.
(2016), a player can prefer a coalition structure, even though
it makes all her friends worse off (just because they happen
to be not in the same coalition). Motivated by these exam-
ples, Kerkmann and Rothe (2020) define the three degrees
of altruism more generally in coalition formation games

itatively different than the fractional hedonic games due to Aziz
et al. (2019)) for which Nash (and, to some extent, core) stable out-
comes are compared with egalitarian social welfare, where instead
of taking the sum of the utilities we look at their minimum.

and show that they differ from the original notions due to
Nguyen et al. (2016). They then study the common stability
concepts (defined above) in their model, and the correspond-
ing problems in terms of their computational complexity.
Most of these complexity results remain the same as for the
original notions of altruism, but two results can be strength-
ened for altruism in coalition formation games: Verification
for core stability and strict popularity under (this new notion
of) selfish-first preferences is even coNP-complete.

Conclusions
We have seen an overview of various notions of altruism
and how they can be introduced into game-theoretic mod-
els, ranging from social context games over to social contri-
bution games in the noncooperative setting and from social
distance games over hedonic games to general coalition for-
mation games in the cooperative setting. During the last two
decades, this has been—and it continues to be—a vibrant
research stream within algorithmic game theory and AI.

Some of the surveyed models consider altruism toward
all players and other models with respect to one’s friends
only; some models allow for weighted combinations of self-
regarding and others-regarding utility and other models spe-
cific ways of combining them. Future work should therefore
propose and study a unifying framework that captures sev-
eral of these models of altruism and allows to compare them.

In all these models, we have seen how certain well-studied
stability concepts (e.g., Nash equilibria for noncooperative
games and core stability or Nash stability for cooperative
games) are affected by players being altruistic. Formaliz-
ing altruism, on the one hand, may make some of the ex-
isting game-theoretic models more complex, more subtle,
and more difficult to analyze. On the other hand, altruism
may exact a price by making stability less efficient in terms
of an increased price of anarchy (and so societies of play-
ers may be harmed by some players behaving altruistically).
However, altruism certainly does help to model the interac-
tion among agents (e.g., in multiagent systems) more real-
istically and to explain better what we observe in real life.
Since AI is at its best when it mimics real-world human be-
havior, there is some hope that, when modeling the inter-
action among agents, integrating altruism to a larger extent
into AI systems and AI research will make them both better.

Acknowledgments
I am grateful to Martin Bullinger, Edith Hemaspaandra,
Lane A. Hemaspaandra, and the anonymous AAAI’21 re-
viewers for helpful comments. This work was supported in
part by DFG grants RO 1202/14-2 and RO 1202/21-1.

References
Anagnostopoulos, A.; Becchetti, L.; de Keijzer, B.; and
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