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Abstract

Dialogue systems powered by conversational artificial intelli-
gence (AI) have never been so popular. Interacting with com-
puter through languages reveals a more natural interface to
give orders and acquire information—just like human com-
munication. Due to promising potential as virtual assistants
and/or social bots, major NLP, AI and even Search & Min-
ing communities are explicitly calling-out for contributions
of conversational studies.
Learning towards real conversational intelligence is a trip to
Mars; perhaps we are yet on Earth. We have achieved substan-
tial progress from recent research outputs. Still we have major
obstacles to overcome. In this paper, we present an overview
of progress and look forward to future trends so as to shed
light on possible directions towards success.

Overview of Conversational Studies
“Twenty minutes of small talk with a computer isn’t just a
moonshot. It’s a trip to Mars.”

Starting from 1960s, research for conversational artificial
intelligence (Conversational AI) has never been so popular
as in recent years. Dialogue systems have great potential and
commercial value (e.g., personal assistants, agent systems,
and social bots), as real world applications.

There are two mainstream types of dialogue systems.
Task-oriented dialogue systems are designed for helping
people complete specific tasks such as question-answering
(Ferrucci et al. 2013), bus information inquiry (Raux et al.
2005), etc. Non-task-oriented dialogue systems, a.k.a., chit-
chat dialogue systems, aim to engage users in open domain
human-machine conversation for entertainment and/or emo-
tional companionship, namely social bot or chatbot. In this
paper, we mainly focus on the second type of dialogue sys-
tem but we will make a comparison in details.

Dialogue systems are expected to take over as the main
marketing and communication channel across numerous
major industries. The large-scaled messaging capabilities
powered by the automatic intelligent conversational agents
are predicted to bring revolutions in business operation
and managements. Therefore, companies, capitals, and even
government officials, regard research and development in
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dialogue systems and products as the key driving force to-
wards new profits. Apple Inc. launched Siri, the personal
virtual assistant for every individual user. Google released
several relevant products, from Google Assistant, to Google
Home, and now Douplex. Amazon holds Alexa Prize Chal-
lenge every year to encourage cutting-edge research into
daily dialogues. There are many more companies, big names
or startups, working towards conversational AI.

Take Microsoft as an example. The chatbot dialogue sys-
tem named Microsoft XiaoIce was first released to Chinese
users in 2014, and then was launched in Japan (Rinna),
U.S. (Zo), India (Ruuh), and Indonesia (Rinna). The prod-
ucts now have attracted more than 800 million users all over
the world, and the technologies behind have powered a great
number of business applications such as various third party
official accounts and IoT (Internet-of-Things) devices. Un-
til 2018, users from the 5 countries have finished more than
30 billion conversations with XiaoIce; and on average, each
conversation lasts up to 23 turns. The promising user data
indicate impressive popularity of the dialogue system based
product in the real-world scenarios.

The need from industry stimulates research in academia.
Major conferences and journals are now explicitly calling
out for research articles of conversational studies. We con-
ducted preliminary statistics about the number of accepted
papers published at conversational AI related conferences
within recent 5 years. The target venues for our investigation
include ACL, EMNLP, NAACL, AAAI, IJCAI, NeurIPS,
SIGIR, ICML, and others. We use a simple filter to identify
the number of research papers about conversational studies,
using the query keywords as “conversation” or “dialogue”
or “response”. The result is visualized in Figure 1.

It is obvious that the absolute (total) number of accepted
papers about conversational studies and dialogue systems
steadily keeps going up, as illustrated in Figure 1(a). The
phenomenon may indicate that dialogue research becomes
more and more popular, especially in the Natural Language
Processing (NLP) community. Considering the recent AI
boost which results in expansion in almost all research areas,
we rule out such a factor by counting the ratio of accepted
papers about dialogue systems against all accepted papers.

We have similar observations in Figure 1(b). The ratio of
dialogue papers is also growing up in recent years, especially
in major NLP conferences (ACL, NAACL, and EMNLP).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)
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Figure 1: Statistics: the number of accepted dialogue papers published at conversational AI related conferences: (a) y-axis
denotes the number of accepted papers in absolute numbers; (b) y-axis denotes the ratio of accepted dialogue papers against all
accepted papers per venue per year.

Based on the observation, we assume that the communities
draw the consensus that dialogue systems and conversational
studies are developing fast, although not fully mature. This
area now attracts more and more attention from researchers
from both industry and academia. Hence, it is important to
provide a brief summary report in this research area indicat-
ing 1) where are we now and 2) where we are going.

Preliminary: Dialogue Systems
Before diving into details of the non-task-oriented dialogue
systems, let us first inspect the big picture of conversational
AI. Task-oriented dialogue systems and non-task-oriented
dialogue systems are different in various aspects, but in
some way, the two are also related. Specifically, we compare
the two types of dialogue systems as follows:

Domain of conversation. Conversations in task-oriented
systems are often restricted within task-specific domains,
while conversations in non-task-oriented dialogue often
span over open domain topics without any constraint, al-
though there can be special designs for specific domains.

User intent. In a task-oriented dialogue system, user
intent is framed within a pre-defined task dependent
schema, and every turn of a conversation can be ex-
pressed with a command-like semantic form such as
request(restaurant; foodtype = Thai). For non-task-
oriented dialogue systems, the user intent is much more di-
verse and complicated due to the nature of open domain con-
versations. Therefore, it is difficult to convey user intent with
rigid logic forms, and a common practice is just to tag utter-
ances with high-level dialogue acts (Jurafsky, Shriberg, and
Biasca 1997) such as statement, question, backchannel, etc.
or with high-level topics (Li et al. 2017) such as tourism,
politics, etc.

Architecture. Task-oriented dialogue systems are often
built using a pipeline method with modules such as language
understanding, dialogue management, and natural language
generation (Gao et al. 2019). Each module can be inde-
pendently constructed with rules or data-driven approaches.
Although there are studies on end-to-end task-oriented di-
alogue systems (Wen et al. 2017; Bordes, Boureau, and
Weston 2016), the modular approach is still favored by
the mainstream community. Non-task-oriented dialogue sys-

tems, on the other hand, benefit from advances of neural ma-
chine learning and a large amount of human conversations
available on the Web, and are often built in an end-to-end
way with data-driven approaches.

Evaluation. Task-oriented dialogue systems are often
evaluated with task completion rate (i.e., the ratio of dia-
logues that successfully solve users’ problems in the end)
(Williams and Zweig 2016) or the (average) number of turns
to complete a task (Dhingra et al. 2017), although each of the
modules can also be independently evaluated. On the con-
trary, non-task-oriented dialogue systems lack of standard
evaluation criteria. Automatic evaluation is proven weakly
correlated with human judgment (Liu et al. 2016; Yan 2018),
while human evaluation is expensive and too subjective to
reproduce. In spite of the challenges, existing work either
evaluates quality of responses with perplexity (Xing et al.
2018), or includes word similarity with references (Liu et al.
2016; Tao et al. 2018; Tong et al. 2018). Moreover, it is feasi-
ble to just recruit human volunteers to conduct system-level
evaluation according to their experience in talking with the
conversational AI (Chen et al. 2018a; Fang et al. 2017).

Due to the aforementioned difference, the overlap be-
tween the research efforts on the two types of dialogue sys-
tems is generally not significantly large. Still there are some
questions to be clarified. The first question is:

Are the two types of dialogues completely distinct? We
believe the answer is a big “NO”. In fact, task-oriented dia-
logues and chit-chat are not just black and white. For a con-
versational product to be successful, e.g., Amazon Alexa,
the system needs task-oriented dialogues to help users to
fulfill tasks, and also needs chit-chat as transitions from
one task to another so as to connect task completion ses-
sions with smooth coherence. Usually we see task-oriented
dialogues and chit-chat dialogues interleave in real human-
machine conversations. Therefore, we envision that with the
two types of systems individually becoming better and bet-
ter, an important research topic in the future is how to en-
capsulate task-oriented dialogues and chat-like dialogues in
order to optimize user experience in real scenarios.

Another question is: which type of dialogues is more
useful? We believe there is no clear answer to this question.
Intuitively, task-oriented dialogue systems are helpful, and
thus useful in a variety of ways. The main challenge lies in
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Figure 2: Two matching frameworks: (a) embedding-based matching; and (b) interaction-based matching.

how to scale up to multiple domains for different tasks. With
the release of datasets such as MultiWOZ (Budzianowski
et al. 2018), there is rapid progress towards overcoming the
challenge (Wu et al. 2019a; Chen et al. 2019). On the other
hand, the motivation of building a system for chit-chat seems
“debatable”, but what is rational is actual and what is actual
is rational. Famous products, like Alexa and Siri, are hybrid
of task- and non-task dialogues. The reason could be 1) to
coordinate task sessions, or 2) chatbots provide social com-
panionship and emotional comforts to certain users.

Where Have We Been
Problem Formalization
Given a sequence of utterance C = {c1, c2, . . . , cn} as the
conversation history, where n ≥ 1 and {ci}ni=1 are arrayed
in a temporal order, 1 the problem of human-machine dia-
logue can be formalized as seeking a function F(·|C) such
that a response r can be predicted as cn+1 in a machine-
turn. Depending on how r is acquired, existing studies can
be categorized into retrieval methods and generation meth-
ods. In retrieval methods, r is selected from a bunch of can-
didates {ri}mi=1 which are often retrieved from an index of
existing human conversations. Thus, F(·|C) is defined as a
matching function g(C, r) that measures how likely a can-
didate ri to be a proper response after C. The learning of
g(·, ·) needs supervision, and is often performed with a set
of triples {(yi, Ci, ri)}Ni=1 where yi is a (binary) label in-
dicating the matching degree between Ci and ri (Fu et al.
2020a,b). In generation methods, r is synthesized by orga-
nizing tokens or words. Then F(·|C) is defined as a condi-
tional language model P (r|C) as a distribution of r in the
language space. Estimation of P (r|C) only requires human
conversation sessions {(Ci, ri}Ni=1 without any annotation.

Retrieval Methods
A retrieval-based system for open domain dialogues is built
upon the success of modern search engines (Ji, Lu, and Li
2014). Aside from indexing and ranking which have been
well studied in search, a problem of great interest is how

1The research of open domain dialogues starts from a single-
turn assumption where n = 1, but now focuses on a more natural
multi-turn assumption where n > 1.

to effectively learn a matching model g(·, ·). With the ad-
vances of neural representation learning, matching accuracy
has been greatly improved on benchmarks. On the other
hand, the gap between offline static test and online conver-
sation experience still exists.

While existing work defines g(·, ·) with various neural
networks, the architectures can be classified into two frame-
works. Figure 2(a) illustrates the architecture of Frame-
work I. The framework works in a “representation→match-
ing” procedure. The key idea is to simultaneously embed
C and r into a space and then define g(C, r) as similarity
of the embedding. Since C consists of multiple utterances,
embedding of C is conducted in a hierarchical manner with
{ci}ni=1 firstly represented as vectors and then the utterance
vectors abstracted as a vector of C. Then, the research effort
is paid to definitions of the embedding of C and r with con-
versational features designed with human expertise (Wang
et al. 2013) or neural structures such as recurrent neural net-
works (Lowe et al. 2015; Kadlec, Schmid, and Kleindienst
2015; Yan, Zhao, and E. 2017) and convolutional neural net-
works (Hu et al. 2014; Zhou et al. 2016; Yan, Song, and Wu
2016; Yan and Zhao 2018a; Fu et al. 2020b).

Figure 2(b) shows the architecture of Framework II.
Different from Framework I where matching between C
and r happens at the last step, Framework II follows a
“representation-interaction-aggregation” paradigm and lets
each ci ∈ C interact with r through a function f(·, ·) at the
beginning. {f(ci, r)}ni=1 are finally aggregated as g(C, r).
The flexibility of the framework lies in definitions of the
representations, f(·, ·), and the aggregation operation. Utter-
ances and responses can be represented via an RNN model, a
CNN model, a Transformer model (Vaswani et al. 2017), or
a hybrid of these models. f(·, ·) is usually defined with either
a (2D) CNN structure (Hu et al. 2014) or an attention mecha-
nism (Wang and Jiang 2016). Aggregation is often achieved
through an RNN in order to capture sequential relationship
among {ci}ni=1 (Wu et al. 2017, 2019b), but can also be
replaced with a CNN (Zhou et al. 2018c) or a multi-layer
perceptron (Wu et al. 2017). Because matching happens
at an utterance-level rather than at a context-level, Frame-
work II is able to capture more matching information in a
context-response pair than Framework I. Models proposed
in recent years, such as sequential matching network (SMN)
(Wu et al. 2017), deep attention matching network (DAM)
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Figure 3: Evolution trajectory of matching models: a view
of state-of-the-art leader board of Ubuntu Dialogue Corpus.

(Zhou et al. 2018c), deep utterance aggregation (Zhang et al.
2018b), multi-representation fusion network (MRFN) (Tao
et al. 2019a), interaction-over-interaction (IoI) (Tao et al.
2019b), and multi-hop selector network (MSN) (Yuan et al.
2019), generally belong to Framework II as special cases.

One appealing feature of retrieval methods is that there
are well-established benchmarks and evaluation methods for
model comparison. To be specific, given C and {(ri, yi)}mi=1
as a context and a bunch of response candidates with labels,
one can rank {ri}mi=1 according to {g(C, ri)}mi=1, and then
evaluate the performance of g(·, ·) with methods in learn-
ing to rank (Liu et al. 2009) based on {yi}mi=1. Widely ap-
plied benchmark datasets include the Ubuntu Dialogue Cor-
pus (UDC) (Lowe et al. 2015), Douban Conversation Cor-
pus (Douban) (Wu et al. 2017), and E-Commerce Dialogue
Corpus (E-Commerce) (Zhang et al. 2018b). Among the
datasets, UDC, due to its largest size of the test set, is often
treated as a ruler with the metric R10@1 (i.e., the fraction
of contexts where the only positive response is ranked at the
top position among the 10 candidates) for model compari-
son as a leader board. Figure 3 illustrates the performance
of matching models with respect to the metric on UDC.

On one hand, it seems to be optimistic that the leap
from Dual-LSTM to BERT-VFT (Whang et al. 2020) paves
the way for intelligent human-machine conversation; on
the other hand, performance of the models in real human-
machine conversation is actually misled by the static test
sets, since the data (e.g., UDC) are automatically con-
structed and thus contain noise and many easy patterns. The
original test set of these benchmark datasets are generally
automatically built with response retrieval. Researchers re-
cruit human annotators to label every context-response pair
with {1, 0} where 1 means that the response appropriately
replies to the context from the human judges’ perspective.
Unfortunately, state-of-the-art matching architectures, such
as SMN and DAM, generally suffer from dramatic perfor-
mance drop given such a conversation experience based test.

Therefore, an important task in the future could be bridg-
ing the gap between performance on automatically built
static test sets and performance in real human-machine con-
versations. A recent shift from designing more sophisticated

neural matching architectures to pursuing robust learning
approaches for the existing architectures (Wu et al. 2018;
Feng et al. 2019) seems to take a step towards the problem,
but what the emerging studies have achieved (e.g.,∼2% im-
provement) is still far from enough.

Generation Methods
At the other end of the spectrum, generation methods aim
to recover P (r|C) from observed conversations. The idea of
generation for open domain dialogues with data-driven ap-
proaches is inspired by the research on machine translation,
spanning over the age of statistical machine translation (Rit-
ter, Cherry, and Dolan 2011) and the age of neural machine
translation (Shang, Lu, and Li 2015). Similar to machine
translation, modeling of P (r|C) is based on the encoder-
decoder architecture (Sutskever, Vinyals, and Le 2014;
Vaswani et al. 2017). The encoder first transforms C into a
sequence of hidden vectorsH = (h1, . . . , hn′), and then the
decoder predicts the words (or tokens) in r one by one from
a sequence of latent states S = (s1, . . . , sm′) by attending to
the relevant parts of H (Shang, Lu, and Li 2015). Common
implementations of encoder-decoder include LSTM, GRU,
and the Transformer structures (Vaswani et al. 2017). The
research of generation methods expands from the encoder-
decoder architecture, by defining and learning P (r|C) from
various dimensions. Hereby we illustrate typical directions
for generative dialogue systems.

Relevance to Context. The most basic but fundamen-
tal requirement for dialogue system is to maintain rele-
vance throughout the conversation session. Intuitively, the
contexts can be modeled as a simple representation con-
catenation to the current query representation in a non-
hierarchical way (Sordoni et al. 2015). Later, dialogues are
modeled as word-level for each utterance sentence and then
an utterance-level to keep the global information passed
through turns, which is a hierarchical structure (Serban et al.
2016, 2017; Xing et al. 2018; Tian et al. 2017). Variational
methods have been introduced to model contexts with the
latent variable in addition to structures (Serban et al. 2017).
Memory-based networks are incorporated, which supports
human-like operations such as reading, writing and updat-
ing (Sukhbaatar et al. 2015; Graves, Wayne, and Danihelka
2014; Yan and Zhao 2018b; Chen et al. 2018b).

For all these methods, efforts have been paid to identify
important information from previous utterances, and then to
fuse the information into the decoding process. In this way,
the generated responses are relevant to the contexts.

One-to-Many Diversity. Given a particular query utter-
ance, there can be multiple different responses, which are
totally dissimilar to each other, but they are all appropriate to
respond the query utterance. Such a phenomenon is known
as “one-to-many” diversity in conversations. However, triv-
ial and non-committal responses take up a large portion in
conversational data because these responses are universal
enough to respond many utterances (Li et al. 2016a). Hence,
the dialogue systems are likely to learn the frequently used
patterns and output generic responses.

A simple solution is to lower the probability and weights
of generic utterances to penalize them (Li et al. 2016a). An-
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other intuitive way is to re-rank the candidate tokens to gen-
erate during the decoding phase from the N-best candidate
token lists (Li, Monroe, and Jurafsky 2016). Determinantal
Point Process (DPP) is a diversity-oriented metric to bal-
ance between quality and diversity to generate diverse re-
sponses by diversifying the beam search process (Song et al.
2018). CVAE learns latent variables to depict a distribution
over potential conversational intents and generates diverse
responses accordingly (Zhao, Zhao, and Eskenazi 2017; Ser-
ban et al. 2017). A recent study reveals the correlation be-
tween one query and multi-references with 2-step CVAE
model for diverse response generation (Qiu et al. 2019).

For these models, a strength is that they manage to in-
crease diversity in generation while a weakness is shortage
of intrinsic understanding how diversity is expressed in dia-
logues, which results in lack of interpretability for diversity.

Human-Like Factors. Human-like factors are to the in-
terest of a wide spectrum of audience. We illustrate some
human factors under investigation.

Generally, people have unique ways to express utterances
in conversations, namely “persona”. The persona models
have been proposed with speaker-level vector representa-
tion (Li et al. 2016b) or multi-modal distributions over ut-
terance and speakers (Chan et al. 2019). To distinguish the
roles of speakers and addressees is necessary since a speaker
needs to express differently to different addressees (Ouchi
and Tsuboi 2016), especially for group conversations (Le
et al. 2019; Hu et al. 2019). Interactive recurrent neural net-
work structures have been proposed to model speaker and
addressee representations so that the conversation is charac-
terized by interactions (Zhang et al. 2018a).

“Emotions” are the unique expressions by humans: happy,
sad, angry, etc. Perception and expression of emotions are
key factors to human-like dialogues. Researchers tried end-
to-end learning to equip systems with the ability to perceive
emotions and then express emotions such as emoji (Zhou
and Wang 2018). Emotional Chatting Machine decides
which emotion to express and then incorporates an internal
and external emotion states for balancing semantic informa-
tion and emotions dynamically (Zhou et al. 2018a; Wei et al.
2019). Emotion is further formulated as a transition network
with controlling functions in dialogues (Qiu et al. 2020).

Now we revisited current progress of generation meth-
ods. The Pros of various research objectives indicate vibrant
studies towards human-like conversational intelligence from
multiple aspects. However, the Cons are also prominent: un-
like the retrieval methods, there is no benchmark test set or
universal evaluation metrics for all research directions. Re-
searchers generally conduct experiments on characteristics-
featured data sets and evaluate based on proposed objectives.

Next Steps to Mars
Pre-training
Encouraged by the breakthrough from BERT (Devlin et al.
2019), the research community began to realize the power of
pre-training, and there is a surge of interest on pre-training
for NLP tasks in both language understanding (Joshi et al.
2019; Liu et al. 2019; Yang et al. 2019) and language gen-

eration (Radford et al. 2018; Song et al. 2019; Dong et al.
2019). In terms of open domain dialogues, the outstanding
performance of the systems from Team Lost in Conversa-
tion and Team Hugging Face (Wolf et al. 2019) on the sec-
ond conversational intelligence challenge (convAI2) sheds
light on the future of natural human-machine dialogues with
pre-training techniques such as the GPT-3 model by Brown
et al. (2020). In fact, there is a clear trend that pre-trained
models are being used to improve various sub-tasks in di-
alogues such as response selection (Whang et al. 2019; Xu
et al. 2021), dialogue act prediction (Mehri et al. 2019), and
response generation (Zhang et al. 2019; Zhao et al. 2020b).

A recent report from Microsoft (Zhang et al. 2019) seems
to indicate that pre-training is able to solve some long-
standing problems such as “generic responses” and “lack
of commonsense” in open domain dialogue generation and
achieve human parity on response quality. Therefore, in near
future, just like in other language tasks, pre-training→ fine-
tuning may become the new paradigm of building dialogue
systems, especially when one cannot collect enough dia-
logues (e.g., for some specific domain or in multiple modal-
ities) via end-to-end training. At the same time, some new
problems may surface: 1) how to handle the huge cost from
big pre-trained models in an online environment; 2) how to
interpret the mechanism of the pre-trained models and thus
engineers can effectively debug the systems as before.

“Knowledge is Power”
In human conversations, utterances are often grounded on
external knowledge, such as commonsense from a knowl-
edge base, documents, tables, etc. It is weird for a dialogue
system to say “the sun rises from the west every day”. The
sentence is absolutely correct in grammar, but violates com-
monsense. It is believed to be rather essential to equip di-
alogue systems with knowledge grounding towards better
conversational experience.

Knowledge-grounded utterance generation is firstly in-
vestigated for Knowledge-Based Question-and-Answering
(KB-QA) (He et al. 2017). In dialogues, a Tri-LSTM model
was proposed to use commonsense knowledge as external
memories to facilitate LSTMs to encode commonsense as-
sertions in order to enhance response selection (Young et al.
2018). Ghazvininejad et al. (2018) extend the traditional
encoder-decoder model by considering both dialogue his-
tory and external “facts” from Wikipedia for response gen-
eration. Beyond triplets from the knowledge base, knowl-
edge graph is also incorporated into response generation by
dynamic querying and integration with the graph informa-
tion (Zhou et al. 2018b). In addition to knowledge graph,
many researchers are dedicated to utilizing Web knowledge
for response generation or response selection (Hua et al.
2020). Zhou et al. (2018) release a data set where human
conversations are grounded in a set of movie-related docu-
ments from Wikipedia. Dinan et al. (2019) further release
another document-grounded data set with Wiki articles cov-
ering broader topics. Knowledge-augmented responses are
generated based on these datasets (Zhao et al. 2020a).

Yet, there are pain points for current knowledge-aware
dialogue systems. The existing knowledge, either knowl-
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edge base or knowledge graph, is too sparse for daily conver-
sations. People can talk about anything in dialogues but defi-
nitely we do not have everything available in the prerequisite
knowledge repository. Another problem is that in its current
form, knowledge reasoning is also a bottleneck. To this end,
we expect that a universal schema to extract knowledge from
dialogue contents and to build the knowledge repository on-
the-fly will be the key to success for knowledge-aware di-
alogues. The knowledge shall be extracted, updated (with
accumulation and reasoning), and then be fused into future
dialogues dynamically when applicable.

Multi-Modal Dialogues
Humans converse based on multiple channels of senses.
Intelligent conversational agents are expected to be capa-
ble of leveraging multi-modal signals, such as textual in-
formation, visual information, emotional information, au-
dio information, etc. in their interaction with humans. Chal-
lenges to multi-modal conversation are generally two-fold:
1) how to model the multi-modal information in response
generation/selection; and 2) how to effectively learn such
a model with data-driven approaches. Some recent studies
have touched the first challenge: Mostafazadeh et al. (2017)
ground open domain response generation by images; Hu-
ber et al. (2018) leverage conversation context, visual senti-
ment, and facial expression for response generation. Gao et
al. (2020) propose to combine response learning with texts
and visual stickers as well as emoji.

A second challenge, however, is still left open. Since neu-
ral models, although powerful in terms of representation ca-
pability, are data-hungry, but multi-modal conversation data
by nature are more difficult to obtain than single-modal data.
As a remedy, some researchers work on dataset construc-
tion with crowd-sourcing (Shuster et al. 2018). However,
such datasets are usually small in scale (e.g., several thou-
sands). Therefore, semi-supervised learning and unsuper-
vised learning could be the major concern in future research
of multi-modal dialogues. After all, there is abundant plain
text, tables, images, audios, and videos on Web, and the only
problem is that they are not naturally collated.

Future Applications
With the rapid progress of conversational intelligence, we
believe that the potential of dialogue systems is beyond what
we have witnessed so far on social bots and virtual assistants.
In this section, we illustrate some promising scenarios where
open domain dialogues could be useful. Some of them have
surfaced a bit, and we also believe that there are more to
come in the society. Here, we highlight some directions:

Conversational Search. Since 5-6 years ago, big search
players, such as Google and Microsoft, have been working
on how to make their search service more conversational.
For example, Google allowed users to speak their search on
Chrome in 2013. Open domain dialogues, especially after
they are well powered by knowledge, could greatly enhance
the experience of conversational search by re-shaping it as
a multi-turn question-answering and/or information seeking
process in multi-domain.

Conversational Recommendation. Information provi-
sion is not totally passive anymore. Agents can proactively
recommend relevant information to users during proper tim-
ing of conversation based on understanding on users’ in-
terest and intentions. The systems are even able to transfer
knowledge from one user to others in a privacy-safe way.
Conversational recommendation is likely going to act as in-
formation exchange in people’s daily communication.

Internet-of-Things (IoT). With the success of smart
speakers, e.g., Amazon Echo and Google Home, it seems no
doubt that the physical world could become more connected
with conversational intelligence in the future. No matter task
commands or information requests, all we need to do is just
to speak. People will embrace a smarter life with advanced
dialogue technologies in which casual chats make things
happen in a natural way.

Entertainments. Personalized and informative chat will
change the way we entertain. Games will become more im-
mersive when people can interact with characters in them
rather than just experiencing what has been designed; vir-
tual idols will be able to sing, dance, and talk to everyone;
kids can make friends with their robots, just like Hiro and
Baymax in Sci-Fi movies. Although intelligent robots seem
to be far away, we will eventually have them in our daily life,
and the smart speaker indicates just a beginning.

To sum up, we are likely to have more industries and mar-
kets that conversational AI will play an important role and
make a big change. Researchers and practitioners are striv-
ing to improve the intelligence of dialogues systems and
make it more inviting in reality.

Conclusions
We have witnessed a rapid surge of conversational studies
in the past few years, especially the dialogue systems in
the open domain. The research community of conversational
AI is expanding and companies are making great efforts to
develop conversational products due to the great potential
value: conversational research proceeds with prosperity.

In this paper, we have systematically summarized the
overview of current progress, where we have been and where
we are going in the future. We are entering the AI era
whereby large-scale data become more easily available and
learning techniques become more powerful. We may stand
at the entrance of future success in more advanced dialogue
systems. Although we still face bottlenecks and obstacles
to improve conversational AI, there is a reason for us to be
optimistic about the future of dialogue systems when more
efforts are devoted and key problems are solved.
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