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Abstract

Alzheimer’s disease is one of the diseases that mostly affects
older people without being a part of aging. The most com-
mon symptoms include problems with communicating and
abstract thinking, as well as disorientation. It is important
to detect Alzheimer’s disease in early stages so that cogni-
tive functioning would be improved by medication and train-
ing. In this paper, we propose two attention model networks
for detecting Alzheimer’s disease from MRI images to help
early detection efforts at the preclinical stage. We also com-
pare the performance of these two attention network models
with a baseline model. Recently available OASIS-3 Longitu-
dinal Neuroimaging, Clinical, and Cognitive Dataset is used
to train, evaluate and compare our models. The novelty of this
research resides in the fact that we aim to detect Alzheimer’s
disease when all the parameters, physical assessments, and
clinical data state that the patient is healthy and showing no
symptoms.

Introduction
Alzheimer’s disease (AD) is a type of brain disease, which is
degenerative, and its symptoms worsen over the years. Ac-
cording to the Alzheimer’s Association 1, 5.8 million Amer-
icans are living with AD. Statistics have also shown that an-
nual AD related death rates by age are increasing every year
(vital statistics system 2019). According to (Reiman et al.
2012), AD could begin twenty years or more before symp-
toms are perceptible, and between one and six years with
changes in the brain that are unnoticeable to the person af-
fected. As the disease evolves, more and more brain neurons
stop functioning, lose connection, even die. At first, AD af-
fects the entorhinal cortex and hippocampus brain regions
that are involved in memory (Zott et al. 2018). Eventually,
it affects the cerebral cortex, which is responsible for lan-
guage, reasoning, and social behavior, and many other areas
of the brain.

This pathology, according to the Alzheimer’s Association
1, is the most common cause of dementia, especially among
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older people. AD accounts for 60-80% of the total demen-
tia cases (Manzano et al. 2009). AD significantly reduces
the quality of life (Logsdon et al. 1999) and life expectancy
(Rice et al. 2001) of patients, and is considered as the most
expensive disease in USA (Hurd et al. 2013). When the eco-
nomic impact of this disease is considered, just in 2019, the
total combined payments from all AD patients are estimated
at $290 billion 1.

While there is no cure for Alzheimer’s disease or a way to
stop its progression after diagnosis, and the treatment of AD
is still an open research question, there are drug and non-
drug options that may help treat symptoms. Studies have
demonstrated that early stage intervention of AD can sig-
nificantly impact the degeneration process, and treatment of
symptoms (Kang et al. 2019; Golde, DeKosky, and Galasko
2018; Crous-Bou et al. 2017). The early detection of AD
through conventional MRI scanning will facilitate effective
and in-time interventions/treatments, that would expand the
life expectancy and quality of life of patients.

National Institute on Aging has defined three stages of
AD: (1) Preclinical, when the patients do not exhibit any
symptoms, but brain neuronal structure has started to deteri-
orate; (2) Mild cognitive impairment (MCI), when patients
start to exhibit cognitive impairments, but still can perform
all activities of daily living (ADL); and (3) Alzheimer’s de-
mentia, when symptoms of dementia are severe enough to
interfere with ADLs.

With the advancement of MRI technology (Lohrke et al.
2016), and the recent development of deep learning based
computer vision approaches, several studies have addressed
the detection of AD in MCI and dementia stages (stage 2
and 3) from MRI brain scans (Cheng et al. 2017; Böhle et al.
2019). While these studies have improved our understanding
of Alzheimer’s disease, they do not contribute in early stage
interventions, since stage 2 and 3 are accurately identifiable
through clinical diagnosis. Accurate detection or indication
of preclinical AD is a major interest in the medical com-
munity (Schindler et al. 2017; Perneczky 2018). However,
to the best of our knowledge, existing studies have not ad-

1https://www.alz.org/media/documents/alzheimers-facts-and-
figures-2019-r.pdf
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dressed the challenge of preclinical AD detection from MRI
brain scans yet.

Recent reports on AD suggest that (Sperling, Jack, and
Aisen 2011) change in brain may be evident 20 years be-
fore the stage of dementia (stage 3), and that there is already
substantial neuronal loss by the stage of mild cognitive im-
pairment (MCI) (stage 2). Hence, the goal of this study is the
development of an effective machine learning approach that
can identify the latent patterns due to preclinical AD from
MRI brain scans, which can significantly improve interven-
tion and treatment of AD patients.

MRI brain scans are 3 dimensional (3D) image represen-
tation of the brain structure. Several sequential classifiers
such as, 3D Convolutional Neural Network (CNN) and 3D
recurrent visual attention (RVN) model (Wood, Cole, and
Booth 2019), have been implemented to detect disease re-
lated patterns from the 3D brain scans. Recently, Trans-
former (Girdhar et al. 2019) model has been demonstrated
to outperform all the existing sequential classifiers.

In this study, we employ and adapt two attention net-
work models (3D recurrent visual attention model (Wood,
Cole, and Booth 2019) and Transformer model (Girdhar
et al. 2019)) to our problem of preclinical AD detection
from 3D MRI brain scan data, and compare their perfor-
mances with a baseline model that is based on 3D CNNs.
We evaluated these approaches for differentiating individ-
uals with‘preclinical AD’ from ‘others’. The ‘others’ class
includes healthy individuals or patients suffering from other
dementia problems not related with AD. According to our
evaluation, the 3D CNN model achieves an F1 score of
0.83 and accuracy of 88.34%, the 3D RVN model achieves
an F1 score of 0.87, and 90.65% accuracy, and the devel-
oped transformer model achieves an F1 score of 0.90 and
91.18% accuracy in preclinical (i.e., prior to MCI and de-
mentia stage) Alzheimer disease detection. Experimental re-
sults demonstrate that, by using the MRI images effectively,
it is possible to detect preclinical stage Alzheimer’s disease
with a very promising accuracy.

Related Work
Deep learning algorithms perform very well in identifying
complex structures in high dimensional data, and this is why
there is a very rich literature on detecting diseases using
magnetic resonance images (MRI) and positron emission
tomography (PET). (Korolev et al. 2017) studied the pres-
ence of Alzheimer’s disease using two different 3D CNN
approaches, namely VoxCNN and residual neural networks
(RNN), on MRI data. Also aiming for binary classification,
Alzheimer’s/Non Alzheimer’s, (Cheng et al. 2017) used two
3D CNNs on MRI and PET scans, combining them with a
fully connected layer and a softmax classification.

Over the past few years, there has been a trend in apply-
ing attention based approaches to medical problems. With
these kind of models, we can not only detect a certain pathol-
ogy, but also represent which part of the data is more impor-
tant to make accurate predictions. (Schlemper et al. 2019)
proposed a novel method, referred to as attention gated net-
works, for medical image analysis. This algorithm learns to
focus on target structures, and can be used for leveraging

certain regions for classification purposes. With a similar
goal, (Wood, Cole, and Booth 2019) proposed Neuro-Dram,
a 3D recurrent visual attention, for explainable neuroimag-
ing classification. (Böhle et al. 2019) used a layer-wise rele-
vance propagation (LRP) to visualize CNN decisions based
on MRI data. This algorithm attributes relevance to every
input node, and studies the contribution of each node. It can
output a heat map to highlight the most informative parts of
every input image.

Early detection of AD can be critical when developing an
optimal treatment for each patient (Yu et al. 2009). (Kang
et al. 2019) showed how early stage AD patients, improved
their general cognitive abilities after 12 weeks of paper-
based cognitive training. Along these lines, there has been
a lot of work trying to differentiate between mild cognitive
impairment (MCI) and Alzheimer’s disease (AD). Accord-
ing to (Markesbery 2010), MCI causes a slight and mea-
surable decline in cognitive abilities and it is the earliest
clinically detectable stage before AD. Suffering from MCI
increases the risk of developing AD. (Gupta et al. 2019)
proposed a four-class SVM classifier: AD, MCI stable (pa-
tients with MCI who do not develop AD), MCI converted
(patients whose MCI develop into AD), and healthy pa-
tients. Similarly, to study MCI to AD conversion, (Lee et al.
2019) proposed a multi-modal recurrent neural network. In
this case, they used MRI, demographic information, cere-
brospinal fluid (CSF) biomarkers and cognitive performance
reports as their inputs to the GRU units. With a slightly dif-
ferent approach, (Islam and Zhang 2017) used a model in-
spired by Inception-V4 network (Szegedy et al. 2017) to de-
tect between non demented, very mild dementia, mild de-
mentia and moderate dementia.

The goal of all the discussed approaches is detecting AD
(stage 3) or predicting MCI cases (stage 2) that will develop
AD, i.e. existing studies focus on stages 2 and 3. To the
best of our knowledge, there is no previous work on detect-
ing preclinical stage AD (stage 1) when all the indicators,
including the clinical assessments by doctors, ensure that
the patient is healthy and no symptoms of the disease are
present. Our main goal is to detect future AD from the la-
tent brain scan patterns even before MCI develops, when the
disease is in a preclinical stage.

Dataset
In this work, we employ the recently published longitudinal
neuroimaging, clinical and cognitive dataset, called OASIS-
3 (LaMontagne et al. 2019). It consists of MRI and PET
imaging from 1098 individuals collected across several stud-
ies over the course of 15 years. There are 605 cognitively
normal adults and 493 individuals at different stages of cog-
nitive decline. Ages of the participants range from 42 to 95
years. The dataset contains over 2000 MRI sessions.

For every patient, the aging and disability resource cen-
ter (ADRC) clinical data is available. This data includes pa-
tient’s age at entry, height, weight, and clinical dementia rat-
ing (CDR). Diagnoses for this datatype include “cognitively
normal”, “AD dementia”, “vascular dementia” and factors
that could be contributing such as vitamin deficiency, alco-
holism, and mood disorders. The goal of this study is to iden-
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tify potential AD patients even when they were clinically
diagnosed as “cognitively normal” from the latent patterns
of their brain scans. Hence, in this work, we are only using
brain imaging and the affiliated clinical diagnoses, matching
each scan with the closest clinical diagnosis available.

The presented classifiers perform a binary classification
task: differentiating preclinical AD individuals from oth-
ers. More specifically, our presented binary classifiers use
‘0’ for the patients diagnosed as healthy or with other non-
Alzheimer’s related pathologies, and ‘1’ for the patients with
‘preclinical stage AD’. We define a ‘preclinical stage AD’
patient as a person who is currently diagnosed by a doc-
tor as healthy but we know that in the future he or she will
develop AD. For this, we label each MRI session indepen-
dently, matching every clinical data that we have with the
closest MRI session available.

In this dataset, MRI brain scans are available from two
different views, the axial or horizontal plane, and sagittal or
longitudinal plane (Park et al. 2010). We decided to use the
axial plane since only a smaller portion of the individual’s
data contain sagittal scans. Since not all the images had the
same resolution, as part of our image pre-processing, we re-
sized and normalized all the images.

One of the initial challenge we encountered was the sig-
nificant class imbalance. More specifically, for class ‘0’
(healthy subjects), there were 2181 scans, whereas for class
‘1’ (patients with preclinical stage AD), we had only 176
scans. To address this issue, we down-sampled our class ‘0’
and over-sampled the class ‘1’, by randomly rotating and
mirroring some of the images (as proposed in (Ando and
Huang 2017) and (Zhou 2020)). We also implemented a bal-
anced sampling process. This method creates a sampler in
the data loader based on the number of images of each class
that yields the next index/key set to fetch. This is useful to
ensure that we have an even number of labels on each train-
ing batch.

Proposed Approach
As mentioned above, existing works addressed stage 2 and 3
AD detection. One of the significant differences of our work,
compared to the state-of-the-art, is that we address the more
challenging problem of preclinical AD (stage 1) detection.
To ensure the latent brain pattern extraction for preclinical
AD detection task, we only considered the 3D brain scans
as input. This makes the classification task more challeng-
ing, since we cannot adapt the models to different factors
that could be critical when predicting AD, such as the age
or the sex of the patient. To address this challenging prob-
lem, we adapt and employ two different attention mecha-
nisms, namely 3D recurrent visual attention model, and at-
tention transformer. We compare our two attention mecha-
nisms with a baseline model, which is based on 3D CNNs.

Baseline - 3D CNN Model
The baseline model is based on a 3D CNN model, which
was initially used for video classification tasks 2. This model
uses 3D kernels and channels to convolve video input, where

2https://github.com/HHTseng/video-classification

the videos are viewed as 3D data (2D images over time di-
mension). For our baseline model, we stack all the images
in a brain scan, turn them into 3D input data, and then feed
it to the network. The model we developed consists of five
convolutional layers and three fully connected layers. Each
convolution layer is followed by batch normalization, ReLu,
dropout, and pooling layers. We consider this model as our
baseline.

3D Recurrent Visual Attention Model
For our first model shown in Fig. 1, we employ a re-
cently proposed 3D recurrent visual attention model, which
is tailored for neuroimaging classification (Wood, Cole, and
Booth 2019) and focuses on already developed AD detection
task. This model uses a recurrent attention mechanism that
tries to find relevant locations of brain scan indicative of AD.
The model consists of an agent that is trained with reinforce-
ment learning. It is built around a two-layer recurrent neu-
ral network (RNN). At each timestamp, the agent receives a
small portion of the entire image, which is a glimpse, cen-
tered around a position l, and decides which location to se-
lect at the next timestamp. After a fixed number of steps, a
classification decision is made. The aim of using an agent
is to maximize the rewards along the timestamps, and then
decide to attend the most informative regions of the images.
We define our reward, rt, as 1 for all timestamp t if the clas-
sification is correct, or 0 if it is not. Overall, the model con-
sists of four different networks: the glimpse network, the re-
current network, the location network and the classification
network.

The glimpse network takes a small 3D image fraction
xt, and its location coordinate lt as input, and outputs a vec-
tor gt. It generates a representation of the glimpse (i.e., 3D
image fraction) summarizing the ‘what’ gxt

, and ‘where’
glt information. The glimpse network consists of 3D con-
volutional layers (with batch normalization and max pool-
ing) that generates the ‘what’ representation, and a single-
layer fully connected layer that converts the location coordi-
nated to the ‘where’ representation. Final gt is obtained by
an element-wise multiplication of these representations:

gt = gxt
� glt (1)

The recurrent network is used to obtain the agent’s
internal representation encapsulating the information ex-
tracted from past timestamps. This network consists of two
stacked LSTM units (Hochreiter and Schmidhuber 1997).At
each timestamps, hidden-layer representation generated by
the LSTM units is fed into the location network to obtain the
next timestamp’s glimpse location, lt+1. At the last times-
tamp (i.e., last iteration of the LSTM sequential analysis)
the hidden layer representation is fed into the classification
network.

The location network consists of a single-layer fully
connected layer, which maps r2(t) to a 3D vector in the range
[-1,1] which is an isotropic 3D normal distribution. Next lo-
cation lt+1 is then produced by sampling from this distribu-
tion.

Finally, the classification network consists of a single
fully connected layer with a sigmoid activation function,
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Figure 1: Overview of 3D Recurrent Visual Attention Model

which is used for binary classification. As previously stated,
the input to this network is the final timestamp hidden layer
representation of the LSTM unit.

Total number of timestamps/iteration T in the recurrent
network, and the glimpse size are hyper-parameters. In our
evaluation we identified T = 6, and the glimpse size (3D
image fraction) 40 × 40 × 40 as the beneficial value, based
on the grid search on possible values.

Attention Transformer
As our second model, we employed a transformer network
for the task of preclinical AD detection. Transformer mod-
els have been used for different tasks such as human ac-
tion recognition from videos (Girdhar et al. 2019) and text
translation (Vaswani et al. 2017) . Although transformer net-
works have been used for other tasks and applications, we
firmly believe that this is the first work that employs a trans-
former network on MRI images of brain for preclinical stage
Alzheimeir’s disease detection. Slices from a brain scan are
fed to the network, and the network is expected to detect
whether any sign of dementia is observable or not, even the
subject is showing no signs nor symptoms of the disease yet.

Implemented Transformer model consists of a base net-
work and a head network similar to (Girdhar et al. 2019).
Base network extracts feature-representations from each of
the brain MRI image slices, and the head network generates
the binary inferences (i.e., preclinical stage AD or others).
Both the base and the head networks are described along
with the modifications we have made in the following sub-
sections.

Base Network. Since we deal with binary classification
for preclinical stage AD detection, we use a VGG16 network
(Simonyan and Zisserman 2015) as our base network. We
extract frames from brain MRI scans (96 frames) and feed
them into the base network. Due to the nature of the base net-
work, it accepts 224×224×3 images, where 224×224 repre-
sents image height and weight, and 3 represents the channel
size. On the other hand, slices from brain MRI scans differ

in size, and are gray scale, which has only one channel. After
resizing our input images to 224 × 224, the first modifica-
tion we do for the base network is adding an extra convolu-
tional layer at the beginning to get the desired input for the
base network. We set in channels=1, out channels=3, ker-
nel size=3, stride=1, padding=1 and dilation=1 for this new
convolutional layer.

We have experimented with two different approaches,
namely training the base network from scratch and using a
pre-trained model (trained on conventional RGB images).
As detailed in the experiments section, we obtained better
results when the base network was trained from scratch. In-
stead of stacking images, (compared to 3D CNN and 3D
recurrent visual attention model), we feed each of the brain
scan images/frames in a sequence, like a video. The base net-
work portion of the Fig. 2 illustrates the network described
so far. We then send the output of the base network to the
head network.

Transformer Unit. The original transformer architecture
was proposed in (Vaswani et al. 2017) for sequence to se-
quence tasks to overperform recurrents models. It is done by
selecting a feature frame and comparing it with all features
in a sequence in order to compute attention. To do that, fea-
tures are mapped to a query (Q) and memory (K for key and
V for value) embeddings using linear projections. Since the
original transformer is designed for language to language
translation, Q is the word that is being translated and K and
V are the linear projections of the generated input and output
sequences.

On the other hand, our transformer network consists of
a positional encoder, three head units, shown as Block Head
Units in Fig. 2, and a classifier. This unit takes the brain MRI
image sequence features and also the positional embeddings
for attention proposal regions and maps them into query (Q)
and memory features (K, V). Query (Q) represents the re-
gion with signs of preclinical stage AD. Frames around that
region are projected into K and V. Block Head Units as in
Fig. 2 process the query and memory embeddings to update
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Figure 2: Overview of Attention Transformer Model

the query vector. By doing so, they aggregate the informa-
tion over the brain MRI scans to classify whether the given
sequence belongs to preclinical stage AD class or not.

We evaluated using different optimizers, and SGD (Rob-
bins 2007) was the most beneficial choice. We set learn-
ing rate as 1e−4, momentum as 9e−4 and nesterov as True
(Sutskever et al. 2013). We use cross-entropy loss (Korolev
et al. 2017) for our classifier.

Experiments
We first split our dataset into three person-disjoint subsets:
training, validation and test subsets. When trying to detect a
certain pathology using patients’ scans, it is crucial to split
the data correctly. Different scans from the same person can-
not appear among different datasets. If so, there is a risk
that the model gets trained to correctly label those repeated
patients, and it will perform poorly on scans from never-
before-seen patients. This is why we decided to use per-
son disjoint datasets. Each participant’s MRI scan consists
of 256 images. After the downsampling and oversampling
process previously described, we used 65% of the available
data for training, 20% for validation and 15% for testing.

It should be emphasized that the goal of this study is to
detect scans, which were confirmed to be healthy by the
doctors at the time of the scan, and which we know that in
the future will develop Alzheimer’s disease. Hence, we de-
veloped binary classifiers with preclinical stage Alzheimer’s
patients labeled as class ‘1’, and the healthy patients or pa-
tients suffering from other dementia problems not related
with Alzheimer’s labeled as ‘0’. The evaluations discussed
in this section follow the data labeling scheme shown in
Fig. 3. In line with the study goal, we exclude the scans of
patients, who have already developed and been diagnosed
with AD, from the ‘other’ category (i.e., class 0), in order
to focus on better differentiating between healthy and pre-
clinical AD patients. As previously stated, to the best of our
knowledge, there is no previous work on detecting preclini-
cal stage AD.

For each model, we calculate the confusion matrix, F1
score, false negative rate, precision, recall, and accuracy.
One of the best metrics to compare models when dealing

Figure 3: Overview of our data labeling approach

with an imbalanced classification problem is the F1 score 3.
In the following subsections, we will present the obtained
results for each model, and compare them in terms of the
F1 score. Also, since our main task is being able to detect
possible AD patients when they are still healthy, the false
negative rate will also be considered as an important com-
parative metric.

Results for the 3D CNN model. We used our 3D CNN
model as our baseline. The best version of this model is
trained with a learning rate of 1e−5 for 50 epochs. To
avoid overfitting the training data, we chose AdamW as
our optimizer with a weight decay of 0.1. We used cross-
entropy (Korolev et al. 2017) as our loss function. With these
configurations, we obtained the confusion matrix shown in
Table 1.

Actual

Categories Healthy /
other dementia

Preclinical
AD

Predicted Healthy /
other dementia 99 15

Preclinical
AD 4 45

Table 1: Confusion matrix for the baseline model.

According to the evaluation, the 3D CNN model achieves

3https://towardsdatascience.com/metrics-for-imbalanced-
classification-41c71549bbb5
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an F1 score of 0.83 on preclinical stage AD detection. As
shown in Table 1, we have a false negative (FN) rate of
25%. By taking a closer look at some of the patients wrongly
labeled as healthy or other dementia when they were pre-
clinical AD patients, we identified that they are the patients
whose clinical data is not very consistent. More specifically,
there are some patients who are diagnosed with AD at some
point of the data collection process, and then they recover
their cognitive abilities. Therefore, these patients are diag-
nosed as “Cognitive normal” for the rest of their life. We find
that this type of patients are the hardest to correctly classify.
Additionally, OASIS 3 dataset contains brain scans from pa-
tients with non-Alzheimer (non-AD) related dementia, that
3D CNN baseline model finds difficult to classify correctly.
On the other hand, the baseline model performs well in clas-
sifying subjects who, once diagnosed with AD dementia, do
not fully recover their cognitive abilities.

As an example, the clinical data of patient ID 30205 (on
OASIS 3 dataset) is shown in Table 2. The patient was clini-
cally diagnosed as “Cognitively normal” on day 0000, 0406,
and 0773. OASIS 3 Dataset contains a complete MRI brain
scan of the patient performed at day 61. Our baseline 3D
CNN model can detect ‘preclinical stage AD’ from these
scans performed on day 61. Thus, the baseline algorithm is
able to detect ‘preclinical stage AD’ 1064 days (1125 - 61 =
1064) before the patient is diagnosed with uncertain demen-
tia. If we just consider when the patient is actually diagnosed
with Alzheimer’s disease, we are able to detect that pathol-
ogy 1,776 days (1837-61) before it is diagnosed.

Day Diagnose
0000 Cognitively normal
0406 Cognitively normal
0773 Cognitively normal
1125 uncertain dementia
1460 uncertain dementia
1837 Alzheimer’s disease dementia

Table 2: Clinical data for patient 30205.

Results for the 3D recurrent visual attention model.
With the attention mechanism models incorporated, our goal
is to outperform the baseline. For the 3D recurrent visual at-
tention (3D RVN) model, the best performance is achieved
with a learning rate of 1e−4, trained for 200 epochs using
AdamW. We also evaluated different glimpse sizes (i.e., im-
age fraction size). More specifically, we experimented with
20×20×20, 40×40×40, and 60×60×60. The best results
presented in Table 3 were obtained with the 40 × 40 × 40
glimpse size. According to the evaluation, the 3D RVN
model achieves an F1 score of 0.87 for ‘preclinical stage
AD’ detection, which is 5% higher compared to the baseline
3D CNN model. Additionally, according to the results, the
false negative (FN) rate is 19.2%, which is lower than the
3D CNN model.

As an example, the clinical data of patient ID 30025 (on
OASIS 3 dataset) is shown in Table 4. The patient was clin-
ically diagnosed as “Cognitively normal” from day 0000 to

Actual

Categories Healthy /
other dementia

Preclinical
AD

Predicted Healthy /
other dementia 84 10

Preclinical
AD 3 42

Table 3: Confusion matrix for the 3D RVN model.

day 2608, and diagnosed as “AD dementia” on day 2933.
OASIS 3 Dataset contains two complete MRI brain scans of
the patient performed on day 0210 and 2298. Our 3D RVN
model correctly infers ‘preclinical stage AD’ by taking the
brain scan taken on day 0210 as input. This result demon-
strates that the presented 3D RVN can detect AD 2723 days
before it is clinically diagnosed by doctors.

Day Diagnose
0000 Cognitively normal
0359 Cognitively normal
0751 Cognitively normal
1106 Cognitively normal
1547 Cognitively normal
1915 Cognitively normal
2247 Cognitively normal
2608 Cognitively normal
2933 Alzheimer’s disease dementia

Table 4: Clinical data for patient 30025.

One of the important benefits of this model is that not
only we can detect AD before any symptoms, but also we
can plot the part of the data that the algorithm interprets as
more important when making accurate decisions. In our im-
plementation, the initial (timestamp 0) glimpse location lt is
at the center of the brain. After that, the glimpse moves in a
direction that maximizes the reward function.

Figure 4 shows the extracted glimpse locations by the 3D
RVN model for a random participant with preclinical AD.
The figure demonstrates how the 3D RVN agent is exploring
the brain regions. The green point shows the first glimpse,
which is located at the center of the brain at the first times-
tamp. Since we are using a total of six timestamps (T = 6) in
the current 3D RVN, there are six different areas where the
model agent focuses on to make an inference. By plotting
the glimpse’s location, we can visualize which parts of the
brain are more informative when detecting preclinical stage
Alzheimer’s disease.

By examining the testset brain scans, and the areas where
the 3D RVN model is paying more attention (producing lo-
cation lt to extract glimpse/3D image fraction), we identified
that it is focusing on areas like: locus coeruleus, hippocam-
pus, entorhinal cortex, and amygdala, parts of the brain that
are important for memory and very relevant when detecting
MCI (Bauer, Cabral, and Killiany 2018). Another key brain
region for detecting AD is the lateral ventricles (Ertekin
et al. 2016), and the 3D RVN model is focusing on that area
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Figure 4: Trajectory taken by the glimpse algorithm. The green point is the first location, followed by the red, blue, yellow,
brown, and pink points. We draw a line between them for visualization purposes.

as well.

Results for the attention transformer model. The trans-
former model is trained in a different way compared to other
networks. First, instead of feeding stacked 3D images to the
network, we feed images in a sequence. As mentioned in the
Proposed Approach section, we use a VGG16 (Simonyan
and Zisserman 2015) network as our base to extract fea-
tures. We tried a pre-trained VGG16 model to see the effects
of pre-trained weights, and also trained the network from
scratch. As shown in Table 5, the transformer model when
trained from scratch achieved 4.6% higher F1 score.

Pre-trained Transformer Our transformer
Accuracy 88.82% 91.18%
F1 Score 0.86 0.90
Precision 0.91 0.85
Recall 0.76 0.96

Table 5: Comparison between pre-trained transformer and
our transformer.

Due to memory limitations, we are not able to use all
frames from brain MRI scans. We started by selecting 48
frames from the middle and then went up to 96 frames,
which is the highest amount we can select with our cur-
rent GPU configuration. We achieved the best results with
96 frames, and trained the network with same amount of
images from every scan. We also trained the network for
different epochs. Due to the nature of the transformer net-
works, we need to select higher number of epochs for an op-
timal training. Thus, we trained our transformer model for
200 epochs.

As for the optimizer, we started with Adam (Kingma
and Ba 2015), and set the learning rate (lr) to 1e−4 and
amsgrad parameter to true. Then, we trained the network
with AdamW with lr = 1e−4 and amsgrad set as true. Fi-
nally, we trained the transformer network with SGD (Rob-
bins 2007), and set lr = 1e−4, momentum as 9e−4, and
nesterov as True (Sutskever et al. 2013). Among all the opti-
mizers, we obtained better results, presented in Table 6, with
SGD.

According to the evaluation results shown in Table 6, the
transformer model achieves an F1 score of 0.90, not only

Actual

Categories Healthy /
other dementia

Preclinical
AD

Predicted Healthy /
other dementia 87 12

Preclinical
AD 3 68

Table 6: Confusion matrix for the transformer model.

improving the baseline model but also outperforming the 3D
RVN model. In terms of the false negative (FN) rate, the
transformer model also achieves the lowest rate with 15%.

The transformer model also achieves the best perfor-
mance in terms of the earliest detection. The clinical data
of patient ID 30557 is shown in Table 7. The patient was
clinically diagnosed as “Cognitively normal” from day 0000
to day 3816, and first diagnosed as “AD dementia” on day
4222. OASIS 3 Dataset contains two complete MRI brain
scans of the patient performed on days 1448 and 2185.
Transformer model infers ‘preclinical stage AD’ by taking
the brain scan taken on day 1448 as input. This means that
the algorithm is detecting ‘preclinical AD’ 2774 days (4222
- 1448 = 2774) before the patient is clinically diagnosed.

Day Diagnose
0000 Cognitively normal
0363 Cognitively normal
0749 Cognitively normal
1076 Cognitively normal
1464 Cognitively normal
1980 Cognitively normal
2378 Cognitively normal
3093 Cognitively normal
3452 Cognitively normal
3816 Cognitively normal
4222 Alzheimer’s disease dementia
4586 Alzheimer’s disease dementia

Table 7: Clinical data for patient 30025.

Comparison between models. In Table 8, we compare
the three models by measuring accuracy, precision, recall,
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Model Accuracy F1 Score Precision Recall
Baseline 88.34% 0.83 0.92 0.75
RVN 90.65% 0.87 0.93 0.81
Transformer 91.18% 0.90 0.96 0.85

Table 8: Scores on test data for binary classification.

and F1 score on our class 1 (i.e., ‘preclinical stage AD’).
As can be seen, the transformer model outperforms others
in terms of all the measured parameters. It is worth point-
ing out how measuring just accuracy could not always be
a good metric when comparing models. In terms of accu-
racy, if we compare the baseline model with our transformer
algorithm, the improvement is just 3.21%. However, with
F1 score e.g., the improvement is much higher (e.g., 8.4%
higher F1 score). This is why, to have a clear picture of
which model is performing better, other statistical measures,
such as F1 score, precision and recall, have to be taken into
consideration.

Discussion
It is important to note that a subset of individuals with
biomarker evidence of preclinical AD will not progress to
developed AD dementia during their lifetime (Rowe et al.
2010). Hence, a fraction of the ‘cognitively normal’ la-
beled/diagnosed participants in the OASIS 3 dataset have
preclinical AD biomarker, even though their disease never
progressed to clinicaly diagnosed dementia stage. These in-
dividuals may contribute to the false positive (misclassifica-
tion to AD) rate of our evaluation results.

Figure 5: Overview of data labeling approach that includes
AD dementia

In addition to using the labeling scheme shown in Fig. 3,
we performed further experiments by following the data la-
beling scheme shown in Fig. 5. In this case, the ‘other’ class
included patients with diagnosed AD, and we performed
classification to differentiate individuals with ‘preclinical
AD’ from others, including the patients with developed AD
dementia. We compared the performance of 3D CNN and
3D RVN models. As shown in Table 9, the 3D RVN model
achieves an F1 score of 0.78 and accuracy of 84.6%. Even
though these results are not as high compared to the previ-
ously evaluated ‘preclinical AD’ assessment models (using
the labeling scheme in Fig. 3), the glimpse locations iden-
tified by this RVN agent carry potential. More specifically,
they highlight the brain regions responsible for differentiat-
ing ‘preclinical AD’ versus developed AD (stages 2 and 3).

These findings will enhance our understanding on the dete-
rioration of the brain structure with progression of AD (from
preclinical to AD stages 2 and 3).

3D CNN 3D RVN
Accuracy 83.27% 84.62%
F1 Score 0.81 0.78
Precision 0.94 0.91
Recall 0.71 0.69

Table 9: Binary approach to differentiate preclinical AD ver-
sus others, including developed AD.

Conclusion
A lot of work has been done detecting MCI (stage 2), the
earliest form of detectable Alzheimer’s disease (Markesbery
2010). The novelty and significance of our work is that we
focus on and are able to predict AD at preclinical stage
(stage 1), when all the parameters, physical assessments, and
clinical data state that the patient is healthy.

With that goal, we adapted two different attention-based
network models, and compared their performances with a
3D CNN-based baseline that we implemented. The baseline
model uses stacked MRI scans for classification. The first at-
tention model is a recurrent attention model, which extracts
glimpses from stacked images, and feeds them into recur-
rent attention units to get a classification result. The second
model is a modified and re-purposed transformer network,
which first extracts features of a sequence of images from a
pre-trained network, and then feeds these features to a trans-
former structure to be able to classify the sequence of im-
ages. Among these three approaches, the transformer model
outperformed others achieving an F1 score of 0.90 and accu-
racy of 91.18% in preclinical (i.e., prior to MCI and demen-
tia stage) Alzheimer disease detection. Experimental results
demonstrate that, by using the MRI images effectively, it is
possible to detect preclinical stage Alzheimer’s disease with
a very promising accuracy.
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