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Abstract

The number of published PDF documents in both the aca-
demic and commercial world has increased exponentially in
recent decades. There is a growing need to make their rich
content discoverable to information retrieval tools. Achieving
high-quality semantic searches demands that a document’s
structural components such as title, section headers, para-
graphs, (nested) lists, tables and figures (including their cap-
tions) are properly identified. Unfortunately, the PDF format
is known to not conserve such structural information because
it simply represents a document as a stream of low-level print-
ing commands, in which one or more characters are placed in
a bounding box with a particular styling. In this paper, we
present a novel approach to document structure recovery in
PDF using recurrent neural networks to process the low-level
PDF data representation directly, instead of relying on a vi-
sual re-interpretation of the rendered PDF page, as has been
proposed in previous literature. We demonstrate how a se-
quence of PDF printing commands can be used as input into
a neural network and how the network can learn to classify
each printing command according to its structural function in
the page. This approach has three advantages: First, it can dis-
tinguish among more fine-grained labels (typically 10–20 la-
bels as opposed to 1–5 with visual methods), which results in
a more accurate and detailed document structure resolution.
Second, it can take into account the text flow across pages
more naturally compared to visual methods because it can
concatenate the printing commands of sequential pages. Last,
our proposed method needs less memory and it is computa-
tionally less expensive than visual methods. This allows us
to deploy such models in production environments at a much
lower cost. Through extensive architectural search in com-
bination with advanced feature engineering, we were able to
implement a model that yields a weighted average F1 score of
97% across 17 distinct structural labels. The best model we
achieved is currently served in production environments on
our Corpus Conversion Service (CCS), which was presented
at KDD18. This model enhances the capabilities of CCS sig-
nificantly, as it eliminates the need for human annotated label
ground-truth for every unseen document layout. This proved
particularly useful when applied to a huge corpus of PDF ar-
ticles related to COVID-19.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction
The Portable Document Format (PDF) was introduced in
1993 and has been widely adopted throughout the academic
and commercial world. In 2015, Adobe estimated (Ydens
2015) that there were 1.5 trillion PDF documents in circula-
tion. That number has certainly risen since then.

At its core, the PDF format encapsulates a printing lan-
guage. Practically, this means that a PDF document is a set
of consecutive printing instructions to place one or more
characters, lines and bitmap images in a certain position on
the page with a specific style. As a consequence, the struc-
tural context of the characters/lines within the document is
lost. Without visual interpretation of the page, it is very dif-
ficult to deduce whether a specific set of characters from a
printing command belongs to a title, abstract, table, etc. This
is particularly problematic when one wants to retrieve and
analyze the content of the document. Without knowledge of
the document structure, one can only perform a basic key-
word search, which is very limiting. To extract content from
documents accurately, one needs to know the structure of the
document, which in turn requires robust and accurate con-
version of PDF documents into a well-defined data layout
such as JSON or HTML. The latter remains very challeng-
ing still today.

These limitations of the PDF format have inspired many
researchers to build image segmentation algorithms that can
detect document components in a visual rendering of a page.
In particular, object detection methods based on deep neural
networks have been extensively used to find particular doc-
ument components such as figures or tables (Siegel et al.
2018a; Zhong, Tang, and Jimeno Yepes 2019). The disad-
vantage of using image-based object detection methods is
that they often fail to predict sufficiently accurate regions re-
quired for high-quality structure recovery. Furthermore, they
are computationally expensive. This makes them impractical
for the task of robust document conversion at scale.

In this paper, we present a new method to support robust
PDF document conversion. The novelty of this method is
that we do not rely on image segmentation methods. Rather,
we apply neural network architectures originally designed
for natural language processing (NLP) tasks to the sequence
of printing commands in the PDF code. This work was in-
spired by recent advances in NLP. We investigated whether
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RRF uniform 0.93 0.98 0.96 0.98 0.95 0.99 0.97 0.99 0.97 –
diverse 0.71 0.75 0.77 0.75 0.86 0.97 0.88 0.97 0.88 0.65

Mask-RCNN
cut-off=0.7

uniform N/A N/A N/A N/A 0.47 0.96 0.59 0.97 N/A –
diverse N/A N/A N/A N/A 0.57 0.92 0.83 0.92 N/A 0.13

Mask-RCNN
cut-off=0.95

uniform N/A N/A N/A N/A 0.61 0.97 0.76 0.98 N/A –
diverse N/A N/A N/A N/A 0.72 0.94 0.87 0.8 N/A 0.2

Seq2Seq model
(this paper) diverse 0.96 0.95 0.90 0.95 0.87 0.98 0.95 0.94 0.96 0.70

Table 1: Evaluation results of state-of-the-art AI-based PDF structure recovery methods.

we can replace the input embeddings of characters or words
in traditional NLP networks with the features of the PDF
printing commands. This yields a classification for each PDF
printing command according to a fixed set of labels describ-
ing a document layout feature. Examples of such labels are
title, author, affiliation, abstract, subtitle (of different lev-
els), text, list (including nested lists), table, figure, reference,
caption, etc.

Previous Related Work and State of the Art
There exist several approaches to the problem of docu-
ment structure recovery with different types of outputs,
some of which are implemented in commercial product
offerings for large-scale document conversion (e.g. Ama-
zon Textract, Docparser, IBM Watson Discovery). Broadly
speaking, one can distinguish between two categories of ap-
proaches, which we will refer to as image-based structure
recovery and PDF representation-based structure recovery.

In image-based structure recovery, algorithms or models
are typically designed to detect specific document compo-
nents in a visual rendering of each page. Representatives
of this type are the work presented in the DeepFigures pa-
per (Siegel et al. 2018b) and the PubLayNet paper (Zhong,
Tang, and Jimeno Yepes 2019), which target the extraction
of tables, figures, headers (comprising entities such as title,
chapter or subtitle), text blocks and lists. Whereas deliver-
ing generally favorable results for documents with an unseen
layout, such approaches have fundamental problems: Firstly,
in many instances, the segmentation quality is not sufficient
for high-quality document conversion. It has been reported
that the F1 score for detecting tables and images with the
DeepFigures model (based on ResNet101) is in the range of
80–85% for an expected intersection over union (IOU) of
≥80%. For PublayNet, a mean average precision (mAP) of
90–91% was reported for an IOU of ≥50%. There is still a
significant risk that elements in a document page are mis-
classified or entirely missed because they are not included
in any segmented region or detection box.

Secondly, the detail resolution of the detected document
components is limited due to the problem that training on
fine-grained segmentation labels (e.g. distinguishing among
different list nesting levels, abstract, caption, subtitles) for

visually ambiguous elements is prone to create label confu-
sion and overlapping detections.

In PDF representation-based structure recovery, each in-
dividual text cell (generated by one PDF printing command)
is classified according to a fixed set of labels by consid-
ering only those features that are derived from their data
representation and ordering in the PDF code. This allows
a more detailed structure recovery. The Recursive Random
Forest (RRF) models used in Corpus Conversion Service
(CCS), (Staar et al. 2018) fall in this category and predict
fine-grained labels on the order of 10–20 such as subtitles of
different depths, nested lists, page headers or footers, foot-
notes, bibliographic data, etc. As these models predict a la-
bel for each text cell, they allow us to evaluate their perfor-
mance based on metrics derived from a label confusion ma-
trix, as we showed in detail in our previous work (Staar et al.
2018). We are unaware of any existing, deep-learning-based
approach that works directly on the native representation of
PDF text cells.

In order to validate our newly proposed document-
structure recovery approach with the state of the art, we es-
tablish two baselines:

• Performance of a trained CCS RRF model, computed by a
fivefold cross-validation on a uniform layout dataset (uni-
form) and a diverse layout dataset (see Datasets). The
RRF model is trained on ten labels, namely title, abstract,
author, affiliation, subtitle, text, picture, table, caption and
list. The F1 score is computed directly from the confusion
matrix over the labels assigned to each text cell.

• Performance of a Mask-RCNN network trained on Pub-
LayNet dataset with Facebook’s Detectron framework1,
then applied to the diverse layout dataset (full) for re-
gion segmentation. In order to compute the F1 score over
labels of text cells, we run bitmap images of all docu-
ment pages (1025 by 1025 pixels) through the pre-trained
Mask-RCNN network, retrieve the predicted segmenta-
tion masks for five labels defined in PubLayNet, namely
subtitle, text, picture, table and list, and assign to each text
cell the label of the segmentation mask in which they are
included to at least 80%, otherwise they are not assigned

1https://github.com/facebookresearch/detectron2
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a label. The confidence level at which a region prediction
is accepted is controlled by a cutoff value of either 70 or
95%.
Table 1 shows the F1 scores achieved by the RRF and

Mask-RCNN models. The RRF model performs extremely
well on a dataset with uniform layout (uniform), as was re-
ported in (Staar et al. 2018). On the diverse dataset con-
taining multiple layouts, the classification performance of
the RRF degrades significantly. The RRF models are simply
not robust enough for us to learn the structure for multiple
layouts at once. The results of the Mask-RCNN model are
mixed: It generally has good performance for text-block and
table detection, but only average performance for subtitles
and pictures. Lists are recalled poorly. For inference, Mask-
RCNN occupies close to 2 GB of GPU memory and takes
120 ms per page image on an NVIDIA Tesla P100 GPU.
For comparison, we also show the F1 scores achieved by
our best seq2seq model developed and presented in this pa-
per (bottom). Its strength is clearly that it performs very well
for all labels over the entire diverse dataset.

Networks, Datasets and Evaluation
This section presents our new approach to PDF document
conversion. Additionally, we document how we evaluate the
newly developed models and describe in detail the datasets
we constructed and used in the evaluation.

Networks
The natural flow of the text in a document is very often re-
flected in a sequence of PDF printing commands. This in-
spired us to look at recurrent neural networks and, in par-

pages cells features

e.g. position, width,
height,length…

Cell Features

Features to Label prediction

encoder decoder

… …

…
…

ce
lls

labels

e.g. header, author,
text, list item…

…

…

…
features

Figure 1: Sketch of the network architecture for a generic
page model. In each model, we use the sequence of features
of each text cell as input. The ordering of the cells is ob-
tained after sorting them according to reading order using
the toposort algorithm. The output of the network yields a
label classification for each cell. Each model with which we
have experimented contains at least the encoder part. The
embedding and decoder parts are optional components.

ticular, networks used commonly in NLP. Their unreason-
able effectiveness (see (Sejnowski 2020)) in domains such
as named entity recognition (Lample et al. 2016), machine
translation (Klein et al. 2017) and chemistry (Schwaller
et al. 2018) clearly demonstrates that they can capture the
underlying structure and trends in (noisy) sequences of data.
In the case of traditional NLP, the signals are often the em-
beddings of each character or word in a string. In chemistry
applications, the signals are the embeddings of the charac-
ters in the SMILES representation of a chemical compound.

For PDF document conversion, we use a set of features
associated with each text cell as the input signal. In this
context, a text cell is the final output of a PDF printing
command. Each text cell provides its lower-left coordinate
{x0, y0}, its width & height, its textual content and its text
style. As illustrated in Fig. 1, an ordered sequence of text
cells produces a multi-dimensional signal, which comprises
the {x0, y0} coordinate, width and height of the text cell and
potential derived quantities (e.g. horizontal/vertical distance
to previous/next cell). The dimension of this signal is equal
to the number of features associated with each text cell. The
length of the signal is obviously equal to the number of text
cells of the document. The goal of the network is to as-
sign a label to each cell. In the most generic case, this can
be accomplished by feeding the previously described multi-
dimensional signal as an input to a signal-processing net-
work. The latter will then encode these signals. In traditional
sequence-to-sequence methods, one then uses a decoder, fol-
lowed by a linear transformation and a softmax function to
obtain a label prediction for each cell in the sequence. The
use of a decoder here is optional because the length of the
input signal is always the same as the length of the output
signal. As such, one can in principle skip the decoder step
and directly apply the linear transformation followed by the
softmax function to obtain a label prediction for each cell in
the sequence. See Results for a detailed exploration of these
different options.

Datasets
The training data used for our models was obtained through
human annotation of PDF documents on the CCS platform
as documented in detail in (Staar et al. 2018). In essence, we
annotated 2,940 PDF pages covering seven different pub-
lishing layouts (e.g. Elsevier, Physical Review) using 17 dif-
ferent labels. We refer to this as the diverse dataset. A single-
layout subset of this dataset, which only contains articles
from the Physical Review journal, is referred to as a uniform
dataset (see Previous Related Work and State of the Art).
For reproducibility, we have transformed all parsed PDF
pages in the dataset, including their annotations into easy-
to-consume JSON files and published them on Kaggle2. In
each JSON file, we provide the features (geometric and tex-
tual) of each text cell (or PDF printing command) as well as
its associated label. All geometric features are renormalised
relative to the page dimensions.

As shown in Fig. 2, the distribution of the labels in the

2https://www.kaggle.com/peterstaar/pdf-document-
conversion-dataset
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Figure 2: Label distribution across the entire data set (see
Datasets). The plot shows the distribution of the labeled cells
in the entire data set as well as in the training and test sets.

dataset is heavily skewed. This is expected because the num-
ber of cells with the label text is obviously much greater than
that with the label title. Therefore, special care must be taken
to split the data into training and test sets for representative
and reproducible evaluation scores. This can be achieved by
ensuring that the distribution of the labels is similar in both
sets. Traditional 90–10 random splitting of the dataset into
training and test sets is not recommended because this often
does not result in a similar distribution of labels.

To obtain training and test sets with similar label distribu-
tions, we took two actions. First, we made the test set rela-
tively large by choosing a 60–40 split of the data into train-
ing and test sets. Second, we distributed the pages across the
training and test sets in a controlled way. More precisely,
we created a mapping from each label to the pages in which
the labels occur. This allowed us to rank the labels accord-
ing to the number of pages in which they occur, as shown
in the left-hand part of Fig. 2. Next, we iterated over the la-
bels, starting with the label with the least number of pages
and progressively visited the labels that occur more often.
For each label iteration, we first removed all the pages that
had already been assigned in the training and test sets. The
remaining pages for that label were then split according to
the train-test ratio (e.g. 60–40) and assigned in their set ac-
cordingly. This procedure allowed us to progressively split
the pages into a training and a test set while ensuring that
the distribution of labels is similar for both sets, as shown
in Fig. 2. For simplicity, we have added a few explicit train-
ing and test-set mappings to the Kaggle dataset, both for the
entire dataset as well as for each of the seven layouts.

Evaluation
As we are training a supervised classifier, all evaluation met-
rics can be derived from the confusion matrix over the cell
labels. In order to compare and ultimately rank models with
different network architectures in the next section, we need
to obtain a single number from the confusion matrix. We
chose to compute the F1 average weighted by support, in
which the weights are proportional to the occurrence fre-
quency of each label, to account for the label imbalance.

Results
This section describes our journey to find a neural network
architecture with good classification performance for text-
cell labeling. The evaluation of the networks considers their
accuracy according to the weighted F1 score over the la-
bels. We also review the performance with regard to infer-
ence time and the complexity with the overall memory foot-
print and the number of trainable parameters. Not all archi-
tectures we considered were very successful. However, we
learned valuable lessons from each new network architec-
ture, and we believe that these insights might be very useful
to the reader in the context of similar types of problems.

The search for a good model was dominated by two ques-
tions. First, which network architecture provides good ac-
curacy and performance? Second, what feature engineering
can we apply in order to improve the accuracy for the best-
performing network architectures? We address both ques-
tions in the following sections.

Network Architecture Search
The impressive results of a simple sequence-to-sequence
(seq2seq) architecture with a single GRU layer3 for machine
translation motivated us to start our model search with this
particular architecture. For simplicity, we will refer to this
architecture as model-0dk, which consists of k GRU encod-
ing layers with encoding dimension d and a single GRU
decoding layer. The input for this model can be generated
in two distinct modes: using the features directly (direct
mode) or using an embedding layer (indexed mode) as de-
picted in 1. In the indexed mode, we discretize each feature
into N bins and construct an index lookup. The index i is
computed directly from the bin number bl of each feature l,
i.e. i =

∑M
l=1 N

l−1 bl, where M represents the total num-
ber of features. In this way, a sequence of cell features can be
translated into a sequence of integer numbers. The latter can
then be fed into the network with an embedding matrix as
the first layer. This indexed method resembles more closely
the classical NLP networks, which start with an embedding
layer for the individual characters or words in the vocabu-
lary. The indexed mode has a disadvantage, namely that the
size of the lookup dictionary grows exponentially with the
number of features. Therefore, we restrict the input features
of the network to the geometric features x0, y0, width and
height with a binning equal to N = 20. In this section, we
will consider only these features. In the next section, we will

3https://pytorch.org/tutorials/intermediate
/seq2seq translation tutorial.html
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model-0 direct yes 1 128 – 0.05 0.05 0.05 151 0.7 105,817
model-0 indexed yes 2 64 – 0.25 0.42 0.18 148 1.8 385,241
model-1 indexed yes 2 64 – 0.35 0.42 0.39 407 5.2 426,713
model-1 indexed no 2 64 – 0.79 0.79 0.79 216 4.2 340,569
model-2 indexed yes 2 64 – 0.54 0.55 0.60 575 8.6 725,273
model-2 stacked yes 2 64 – 0.59 0.60 0.60 355 7.7 642,713
model-2 indexed no 2 64 – 0.83 0.84 0.83 397 5.6 457,881
model-2 stacked no 2 64 – 0.96 0.96 0.96 249 5.4 443,545
model-3 indexed yes 2 64 – 0.51 0.53 0.51 2,324 5.5 456,217
model-3 indexed no 2 64 – 0.81 0.82 0.81 612 4.4 350,489
model-3 stacked no 2 64 – 0.96 0.96 0.96 501 2.8 215,321
model-4 indexed yes 2 64 – 0.57 0.58 0.60 3,729 9.8 830,233
model-4 indexed no 2 64 – 0.85 0.85 085 714 6.0 494,105
model-4 stacked no 2 64 - 0.97 0.97 0.97 496 5.8 479,769
model-5 indexed no 2 200 4 0.59 0.62 0.60 63 10.7 889,025

Table 2: Accuracy and performance results for different models. The networks considered here are model-0 (seq2seq with
uni-directional GRU layers and no attention), model-1 (seq2seq with uni-directional LSTM layers and no attention), model-2
(seq2seq with bi-directional LSTM layers and no attention), model-3 (seq2seq with uni-directional LSTM layers and attention),
model-4 (seq2seq with bi-directional LSTM layers and attention) and model-5 (transformer model). Columns k, d and h rep-
resent the optimal number of layers, the encoding dimension and, for model-5, the number of heads, respectively. The optimal
hyper-parameters were obtained from a hyper-parameter search with k ∈ 1, 2, 4, d ∈ 32, 64, 128, 256, and h ∈ 2, 4, 8. All
models have been trained and evaluated with an NVIDIA Tesla P100 GPU.

propose methods to circumvent the exponential increase of
the index range in order to add more features.

We evaluated model-0dk for different depths (1, 2 and 4),
different encoding dimensions (32, 64, 128 and 256) and dif-
ferent feeding modes (direct or indexed). The best overall re-
sult was found for indexed feeding mode, two layers and 64
encoding dimensions, resulting in an average F1 of 0.25. As
shown in Table 2, the results for model-0 in indexed mode
were much better than in direct mode. This was valid for any
combination of the evaluated hyper-parameters k and d. We
believe that the direct feeding mode does not perform well
because the absolute variation of feature elements might be
too small. The indexed method overcomes this issue by bin-
ning the features. Owing to the large discrepancy with regard
to accuracy between the direct and indexed feeding modes,
we decided to stick to the indexed feeding mode for our fur-
ther network search.

After inspecting the results with model-0dk, we identified
three strategies to improve the accuracy. The first strategy
was to replace the simple GRU layers with LSTM layers.
LSTM layers are known to capture complex structure much
better and are used extensively in other machine-learning
tasks. The second strategy consisted of using bidirectional
encoding layers, such that the information of the cells can
propagate also in reverse reading order, allowing the model
to exploit the maximum amount of information. The third
strategy incorporated an attention layer, which introduces
all-to-all correlations between the cells on the page. These

three strategies can be investigated independently (i.e. GRU
versus LSTM; uni-directional versus bi-directional; atten-
tion versus no-attention) for different numbers of layers
and different encoding dimensions. However, in order to
keep the computational cost acceptable, we chose to drop
the GRU option. Therefore, we created four new models,
namely model-1dk (seq2seq with uni-directional LSTM lay-
ers and no attention), model-2dk (seq2seq with bi-directional
LSTM layers and no attention), model-3dk (seq2seq with
uni-directional LSTM layers and attention) and model-4dk
(seq2seq with bi-directional LSTM layers and attention).

After evaluating each model for a different number of
layers (k ∈ {1, 2, 4} and encoding dimensions d ∈
{32, 64, 128, 256}), we found a significant increase in the
accuracy of the models. As shown in Table 2, the LSTM-
based models increased the overall accuracy by at least∼ 10
percentage points compared to the GRU-based model in in-
dexed feeding mode.

During the training of model-1, -2, -3 and -4, we noticed
that a significant portion of the time was spent on the de-
coding layer. This is mostly due to the fact that the de-
coder needs its own output of the previous iteration and is
therefore inherently sequential in nature. This sequential na-
ture of the decoder prevents parallelism during the forward
pass—which is one of the reasons why transformers were
introduced—and makes it slow. For seq2seq models with
variable sequence lengths for input and output, this approach
is appropriate. However, in our case, the length of the output
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Figure 3: Recall, precision and F1 score for all 17 labels in our dataset, obtained from model-4 with a stacked feeding mode,
no active decoder, two bidirectional LSTM layers and attention.

sequence is equal to the length of the input sequence. There-
fore, we can omit the dynamic for-loop in the decoding layer
and directly apply the softmax to the encoded cells. Surpris-
ingly, we found that the models without this active decoder
have a better accuracy in combination with a much better
time-to-solution performance. As can be seen in Table 2, the
F1 scored increased on average by 30 percentage points, and
the time-to-solution is several integer factors faster.

The success of these various seq2seq models also mo-
tivated us to look into the use of transformer-based mod-
els. Our model-5dk,h is an adaptation of the original trans-
former architecture (Vaswani et al. 2017), which eliminates
the transformer decoder. More specifically, the input fea-
tures (direct or indexed plus embedding) are combined with
a sinusoidal positional encoding and fed into a multi-layer
transformer encoder. The last layer of the encoder is linked
to a fully connected layer that provides the final output. To
our surprise, model-5dk,h delivers significantly inferior re-
sults compared to the other models, as displayed in Table 2.
Moreover, we observed that the model is very sensitive to
the fine-tuning of the hyper-parameters, with F1 values rang-
ing between 0.01 and 0.59. We assume that the transformer
models contain too many variables to be trained effectively
on our dataset.

The final accuracy of 0.85 for model-4 was satisfactory,
considering that we only provided a stream of indexed raw
features with no augmentation. As we know that we can en-
code quite a bit more information in the features (e.g. dis-
tance to previous/next cell, ratio of alpha-numerical char-
acters versus alphabetic characters), we suspected that ac-
curacy could be improved significantly by using better data
features.

Feature Engineering and Embedding Strategies
The models we presented in the previous section were built
using bare geometric features only, either in direct or in-
dexed mode. This is suboptimal, according to our previous
experience with RRF models. In this section, we present dif-
ferent strategies to extend the feature set that is fed into
the models. These extended features complement the de-
rived geometric features (e.g. distance to previous and next
cell) and leverage textual features of the cell (e.g. number-
of-characters, starts-with-capital, is-bold).

The indexed feeding mode turned out to be very success-
ful. This is not really surprising because the model archi-
tectures with which we experimented originate from NLP
tasks, where it is common to map characters or words into
d-dimensional vectors via an index lookup in the embed-
ding matrix. As discussed above, we achieve the same re-
sult by discretizing each feature into N bins (more specif-
ically 20 in our case) and computing its associated linear
index i =

∑M
l=1 N

l−1 bl, where bl is the bin index of fea-
ture l. It follows directly from this formula that the range
of the look-up index grows exponentially with an increasing
number of features (= M ). As such, this direct approach of
discretization is not feasible for a large number of features
(e.g. M ≈ 20− 50). In order to prevent this exponential in-
crease, we explored the idea of stacking (or concatenating)
the discretization vectors. Concretely, this means that, for
every value xi of the feature vector ~f = {x1, x2, ..., xM},
we created a one-hot encoded vector ~vi across its bins. Each
of these one-hot encoded vectors ~vi (of size N ) are then
stacked to create a new feature vector of size M ∗N . There-
fore, a feature vector ~f of size M will be transformed into
a binary feature vector of size N ∗ M . This stacking ap-
proach is much more practical for two distinct reasons. First,
it allows us to add many features without exponentially in-
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creasing the index range. Second, we no longer need an ex-
plicit embedding layer because the original feature vector is
transformed in an expanded feature vector in a higher di-
mensional space. Hence, the memory footprint of the model
is also reduced by eliminating the expensive embedding lay-
ers.

The features of the input signal in our approach are equal
to those in the RRF models, described in detail in (Staar et al.
2018). These include geometric features and character-level
features mentioned above. To ensure that our conversion
models are language-agnostic (and can therefore be used on
documents in different languages), we do not include any
actual text content.

The inclusion of the extra features in stacked feeding
mode improved the accuracy by another 10–15 percentage
points. We obtained an average F1 score of 0.96 for model-
2 and model-3, and 0.97 for model-4. For the latter, Figure 3
shows the recall, precision and F1 score for all 17 labels
in our dataset. The numbers in Figure 3 complement the
numbers presented in Table 1. Extremely prevalent labels
(e.g. text, table, formula, picture, caption and citation) are
significantly well captured (i.e. F1 > 0.95). We also achieve
very good evaluation numbers (i.e. F1 > 0.9) for biblio-
graphic data-related labels (e.g. title, abstract, affiliation and
authors).

Model Development, Use and Deployment
in Production

The AI model presented in this paper is currently used in the
production version of the Corpus Conversion Service (Staar
et al. 2018). CCS is a cloud-native application that leverages
several AI models (e.g. for OCR, table and figure detection,
layout classification and segmentation) for accurate conver-
sion of PDF documents into a richly structured JSON. Since
2016, CCS has been in use by IBM internally and for se-
lected key clients. In 2019, CCS became a commercial of-
fering in IBM’s Watson Discovery Service under the brand
name Smart Document Understanding4.

Prior to the development of the model presented in this
paper, CCS offered two models for structure recognition in
documents. One is the Mask-RCNN-based object-detection
model, which predicts clusters of text, tables, figures and
headings in a given page out-of-the-box but provides little
structural detail. The other model is the RRF model, which
can classify text cells in much higher detail but requires
initial user-training on every new document collection and
works well only on document collections with mostly uni-
form layout (see Previous Related Work and State of the
Art). The presented seq2seq model bridges the gap between
the automatic but coarse conversion of the object-detection
model and the detailed but annotation-hungry RRF models.
As long as the seq2seq model has been pre-trained on a di-
verse set of documents, it enables the CCS user to imme-
diately convert PDF documents with high accuracy, without
the need of manual annotation for every new corpus of doc-
uments.

4https://cloud.ibm.com/docs/discovery?topic=discovery-sdu
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Figure 4: Overview of the CCS platform architecture. User-
actions triggered from the WebUI are handled by an API
service, which can dispatch workloads asynchronously to
the compute infrastructure through a queueing mechanism.
Workers pick up queued tasks from a message broker and
store the results for later retrieval on a document database
and cloud object storage. The AI models are served as sep-
arate microservices, which are consumed by workers when
executing the prediction pipeline. The background hatch pat-
tern encloses such CCS components that run and communi-
cate within the Kubernetes cluster environment.

Since the initial launch of the service in 2016, we have
gathered annotation data through the CCS platform for the
training of the RRF models. After filtering out all confiden-
tial and client related data, we obtained a training dataset
of 3,695 pages, which is used in the models listed in Ta-
ble 2. During the network search, we developed and trained
the models offline on a large IBM Power9 based HPC clus-
ter. To this point, the model architecture has converged to
model-4 with stacked features and no active decoder. Con-
sequently, the re-training of the best model has since been
semi-automated. A new training is launched once a new
ground-truth data source is vetted and accepted.

As a cloud-native application, CCS runs in a Kubernetes
cluster environment which hosts all application and service
components (see Figure 4). All platform capabilities are ex-
posed through a top-level REST API service, which is both
backing the CCS Web User Interface and consumed in third-
party automation pipelines and products. Compute work-
loads, such as parsing PDF into an internal representation,
applying the AI model pipeline, and transforming output
into JSON, are chunked into equal batches of several PDF
pages and distributed asynchronously to multiple worker
pods through a message queue. As such, each workload type
can be scaled horizontally across cluster nodes to maximise
throughput with the available resources.

With the introduction of the seq2seq model presented
here, all AI models (in particular deep-learning based mod-
els) which typically hold the network weights in-memory,
are instantiated as standalone, stateless microservices. They
expose a lightweight REST API, which is consumed only
from the workers. The migration to the new deployment ar-
chitecture was driven by several advantanges compared to
the previous behavior, which was calling the model infer-
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ence in-line on the workers. First, a particular model mi-
croservice can better exploit node-local thread parallelism
and memory-sharing for optimised vertical scaling. Sec-
ond, the memory demand for each model instance is well-
predictable (a static amount for the model-state and a buffer
for one batch of input pages) and therefore can be accounted
for in the Kubernetes cluster resource management. Third,
the infrastructure does not have to provision the memory
for serving multiple models in different chunks, since each
model can be scheduled independently. Fourth, the horizon-
tal auto-scaling components of Kubernetes allow to scale
up and down the number of replicas to ensure fast and sta-
ble operation of each model independently. Fifth, the en-
capsulation of each type of model into a separate container
avoids conflicts between runtime library dependencies (e.g.
running on different versions of torch (Paszke et al. 2019)
or separating environments of different libraries). Sixth, re-
moving code-dependencies between models and the logic
of the internal pipeline makes it trivial to customise which
models need to run on a particular document collection and
new model types can be added without requiring any code
changes in the underling platform.

The CCS platform is configured and deployed into a Ku-
bernetes cluster through Helm, which encapsulates all sys-
tem configuration into a chart. It also allows linking to man-
aged persistence services (such as MongoDB and COS)
offered by the respective cloud providers. The presented
seq2seq model was integrated into CCS as a new microser-
vice, which is achieved by building a specific container
image bundling the ML runtime, inference code and pre-
trained model weights, and then adding respective deploy-
ment configurations to CCS to launch it as a microservice.
For development purposes, the container can be built and de-
ployed independently from CCS and then registered at run-
time in the CCS Web UI. We developed Continuous Integra-
tion pipelines to ensure that building and updating the model
microservices with new code or data is seamless and easy to
maintain.

The new model is commonly served on a CPU-only envi-
ronment with an allocation of 180MB of memory per replica
and a dynamic varying number of replicas ranging from one
to ten based on the load. This setup allows to support a CCS
processing throughput of 1 pages per second already with
the single replica and up to 10 pages per second with 10
replicas.

Conclusion
We have presented a model based on recursive neural net-
works, which can accurately classify each PDF printing
command according to its structural function in the docu-
ment. To the best of our knowledge, this is the first time
that a deep neural network has been applied in this way to
address the PDF conversion problem. We have shown that
this approach yields more fine-grained, precise output than
current state-of-the-art models. It is also more accurate (in
terms of F1 scores) and computationally more efficient (both
in time-to-solution and in memory footprint) than image-
based approaches.

We have described the iterative process of developing this
model, including important lessons learned. The most per-
formant methods in the literature may not always be the
most suitable for our problem and our available data, like
we observed with the transformer-based networks. More-
over, data preparation and feature engineering lead to sig-
nificant improvements in accuracy and overall complexity
of the model.

Finally, we showed the advantages of deploying the model
as a microservice in a cloud-native application. With the in-
tegration in an automated pipeline with distributed, scalable
workloads, we can maximize the throughput of available re-
sources and ensure an efficient deployment process. As such,
the model and application presented in this paper qualify
very well for converting large and diverse document collec-
tions such as arXiv.

Broader Impact
The recent COVID-19 pandemic has highlighted again that
fast, scalable document conversion tools are necessary to
make the latest research insights discoverable. At the time
of writing, more than 50,000 PDF documents related to the
subject have been published on various online archives (pri-
marily BioRxiv, MedRxiv and ChemRxiv) as well as pro-
vided by various publishers (e.g. Elsevier and Wiley). These
large document corpora contain many different layouts and
must be converted with the best possible accuracy due to
their highly technical content. As such, the model we have
developed to classify individual PDF printing commands is
of tremendous value and can be used directly in applica-
tions that make COVID-19-related literature searchable. A
prime example of such an application is the IBM COVID-
19 Deep Search platform5, which was made available to all
researchers and scientists across the world.

The broader impact of this work is twofold. On the one
hand, it is absolutely imperative that new AI models be de-
veloped that can structure and extract the data contained in
PDF documents. A crucial step in this process is the ac-
curate conversion of PDF documents into formats that can
express the structure of the document, such as JSON. The
new structure recovery model we present in this paper ad-
dresses this problem with great success. On the other hand,
this paper demonstrates how recursive neural networks can
be used successfully in rather specialized, non-mainstream
application domains (PDF structure recovery is not nearly
as prevalent as image classification, object detection or ma-
chine translation tasks, for example). We intended to present
not only the successful models, but also the failures. The
purpose of showing the successes and failures is to guide fu-
ture research with direct examples of what may and may not
work.
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