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Abstract

Designing deep learning-based solutions is becoming a race
for training deeper models with a greater number of layers.
While a large-size deeper model could provide competitive
accuracy, it creates a lot of logistical challenges and unreason-
able resource requirements during development and deploy-
ment. This has been one of the key reasons for deep learn-
ing models not being excessively used in various production
environments, especially in edge devices. There is an imme-
diate requirement for optimizing and compressing these deep
learning models, to enable on-device intelligence. In this re-
search, we introduce a black-box framework, Deeplite Neu-
trino™ for production-ready optimization of deep learning
models. The framework provides an easy mechanism for the
end-users to provide constraints such as a tolerable drop in
accuracy or target size of the optimized models, to guide the
whole optimization process. The framework is easy to include
in an existing production pipeline and is available as a Python
Package, supporting PyTorch and Tensorflow libraries. The
optimization performance of the framework is shown across
multiple benchmark datasets and popular deep learning mod-
els. Further, the framework is currently used in production
and the results and testimonials from several clients are sum-
marized.

1 Introduction
Deep learning has been one of the most intrusive technolo-
gies of the 21st century, having revolutionized businesses
across multiple industries. From building better gaming op-
ponents to translating languages in real-time, to the de-
tailed understanding of large volumes of images and videos,
deep learning has enabled us to achieve automation in dif-
ferent applications. However, deep learning is now a race
for the ability to build deeper and larger models to pro-
duce better results. Recent models such as BiT-M from
Google (Kolesnikov et al. 2019) with 928 million parame-
ters, Megatron-LM from NVIDIA (Shoeybi et al. 2019) with
8.3 billion parameters, Turing-NLG from Microsoft (Rasley
et al. 2020) with 17 billion parameters, and GPT-3 from
OpenAI (Brown et al. 2020) with 175 billion parameters
show the unprecedented growth in the size of deep neural
network (DNN) architectures.
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This explosive growth has led to the primary challenge
of the democratization of deep learning. Training such huge
models would require vast computing powers with super-
computers, which is not accessible to all. For example, the
latest GPT-3 model with over 350GB in memory size costs
over $12 million dollars to train using specialized super
computers1. Such a computing infrastructure is not available
to everyone and is globally not affordable by all deep learn-
ing startups and researchers.

There are other implications in training huge DNN mod-
els such as energy and power consumption. Strubell et
al. (Strubell, Ganesh, and McCallum 2019) studied that
the compute required to train large-scale DNN models pro-
duces carbon-dioxide emissions equivalent to five times the
lifetime emissions of an average American car. They also
showed that the annual power consumption of cloud com-
puting giants such as Amazon AWS, Google, or Microsoft,
is equivalent to the annual power consumption of the United
States. Additionally, according to a recent Gartner survey,
as of 2020, there are more than six billion edge devices2 and
current state-of-the-art DNN models are not equipped to be
deployed directly on edge devices due to challenges in their
memory requirements.

Our objective is to optimize such DNN model architec-
tures without a reduction in accuracy, as step progress to-
wards enabling them to be directly deployed in edge de-
vices. The idea behind model optimization is under the pre-
sumption that DNN architectures are over-parameterized.
Optimization reduces the number of parameters of the large
DNN model while improving the performance of the model
in metrics such as computational cost, inference time, and
energy consumed. This leads to the primary and the most im-
portant research question, “Can smaller models with fewer
parameters, achieve an accuracy performance equivalent to
a deeper model with a larger number of parameters?”
Challenges of Model Optimization in Production

In the research community, there are some popular ap-
proaches such as model pruning, model quantization, and
model decomposition to achieve model compression. How-

1https://venturebeat.com/2020/06/01/ai-machine-learning-
openai-gpt-3-size-isnt-everything/

2https://www.gartner.com/en/newsroom/press-releases/2019-
08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
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Figure 1: The typical development life cycle of a deep neural network (DNN) model. The proposed black-box framework for
model optimization, Neutrino, can be seamlessly integrated into the development life cycle at minimal cost.

ever, there are a lot of challenges in consuming research ori-
ented techniques in production.

1. Democratization of DNN Optimization: Training and
optimization of DNN architecture is currently unafford-
able and requires super-computing infrastructure. How
could we make a production-ready optimization frame-
work that is consumable and affordable by everyone?

2. Multiple Metrics to Optimize: There are multiple met-
rics to optimize such as (i) the number of parameters, (ii)
model memory size, (iii) inference time, (iv) computa-
tional cost in terms of FLOPs/ MACs, or (v) energy con-
sumption. It is challenging to optimize in parallel multiple
metrics of optimization.

3. Constrained Optimization: Applications may require
optimization to focus on certain metrics while trading off
on other metrics. For example, real-time systems would
require the inference time to be low while low-memory
edge devices would focus on model memory size reduc-
tion. How would we guide the model optimization to favor
certain metrics over others?

4. Hardware support: The generic implementation in pop-
ular libraries such as PyTorch and Tensorflow does not
support certain methods of model compression. Also, the
model compilation and the device hardware-specific exe-
cution of the optimized model is challenging. While most
of the techniques are targeted towards GPU, how could we
optimize DNN architectures for specialized hardware?

5. Black-box Framework: The end-users’ usability and
simplicity is a key requirement for consuming optimiza-
tion in production pipelines. There is a big need for a
black-box optimization framework, where the end-user
could easily provide the trained model, the dataset, and
constraints for optimization, while not be troubled with
the nuances of implementation and execution.

6. Research Papers to Production: Often, research papers
aims at finding a highly optimized model which retains
the accuracy of the original model, while the cost involved
in optimization or searching for the optimized model is
considered secondary. However, in production systems,
the cost and the time incurred in optimizing the original
model are equally important. Unstructured weight opti-
mization is only realistic in some ideal theoretical hard-
ware. A production-ready framework should generalize

the optimization approach across a wide variety of archi-
tectures and hardware.

In this research paper, we introduce Neutrino 3 4, a lights-
out DNN model optimization framework guided by the
end-users’ constraints and requirements. A typical contin-
uous development life cycle of a DNN model is shown
in Figure 1. The proposed Neutrino can be seamlessly
and smoothly integrated into any development and deploy-
ment pipeline. The framework consumes a pre-trained DNN
model, with the original train-test split data as input, in
addition to optimization requirements from the end-user.
Neutrino produces the optimized model that can be further
used for inference either in a cloud environment or could
be directly deployed on the edge device. Neutrino builds
a symphony of different model optimization and acceler-
ation techniques. This research paper focuses on the part
of constrained optimization technique used in the frame-
work and the successful results obtained on various public
benchmark datasets and popular models. Neutrino frame-
work is distributed as Python PyPI library, with support for
PyTorch (Paszke et al. 2019) and early support for Tensor-
flow (Abadi et al. 2015) library.

The rest of the paper is organized as follows; Section 2
provides background literature of various model optimiza-
tion techniques. Section 3 explains the architecture of the
proposed optimization framework. Section 4 details the ex-
perimental results obtained on various benchmark datasets
and popular DNN architectures. Section 5 presents the busi-
ness impact and use-cases of the proposed framework, along
with the development details. Section 6 summarizes our ef-
forts with some short-term and long-term future goals.

2 Background Literature
The different methods explored in the literature for DNN
model optimization aims to reduce the number of parameters
in the model. These techniques can be broadly grouped into
three schools of thought: (1) weight pruning, (2) architecture
search, and (3) weight decomposition.

Weight Pruning
The redundant parameters of the model that do not con-
tribute to the effective output are pruned, resulting in a

3In this paper, Neutrino refers to Deeplite Neutrino™
4https://www.deeplite.ai/index.html#neutrino
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smaller model with fewer parameters. Column and struc-
tured shape pruning introduce non-zero weight values, while
the channel and layer pruning reduce the size of the model.
Weight pruning in DNN architectures is a well-researched
topic with a set of comprehensive survey reports (Choud-
hary et al. 2020; Liu et al. 2020a; Cheng et al. 2017).
Liu et al. (Liu et al. 2020b) proposed AutoCompress, an
automated experience-guided heuristic search technique to
achieve extreme compression rates. Ren et al. (Ren et al.
2020) proposed a density-adaptive regular-block (DARB)
pruning technique to perform pruning at a channel row-
level. Most of these techniques perform post-training prun-
ing while Wang et al. (Wang et al. 2020) proposed a method
for pruning a DNN architecture from scratch. They showed
that comparable accuracy on models is achieved with similar
computational budgets as the post-training pruning methods.

Architecture Search
Architecture search finds a surrogate model, from the set
space of all possible DNN architectures, such that the sur-
rogate (or student) model is much smaller with similar per-
formance as the original model. Thus, model optimization
is formulated as a learning or heuristic-driven search prob-
lems such as knowledge distillation (Luo et al. 2016; Phuong
and Lampert 2019; Changyong et al. 2019), Guided Net-
work Architecture Search (Kang, Mun, and Han 2020), or
AutoML (He et al. 2018), or meta learning (Bai et al. 2019).

One of the recent reforming ideas in model compression
is the Lottery Ticket Hypothesis (Frankle and Carbin 2018).
Morcos et al. (Morcos et al. 2019) showed successful results
of model compression by generalized lottery ticket hypothe-
sis across different benchmark datasets and popular DNN ar-
chitectures. Yu et al. (Yu and Huang 2019) explained a fam-
ily of possible slimmable architectures by using a variable
layer width switch, based on the batch-normalizaton layer.

Weight Decomposition
The idea of decomposition is to fragment a really large
weight matrix (or tensor) into a set of linear sequence of
smaller tensors, such that maximum information is retained.
Denton et al. (Denton et al. 2014) proposed singular value
decomposition (SVD) of the original weight tensor to find
the orthogonal bases. Jaderberg et al. (Jaderberg, Vedaldi,
and Zisserman 2014) built a low-rank filter-bank approx-
imation of the convolutional layer, to achieve upto 4.5x
speedup and compression. Lebedev et al. (Lebedev et al.
2014) used the popular canonical polyadic decomposition
(CP) to achieve layer compression. Yu et al. (Yu et al. 2017)
proposed a SVD-free greedy alternative for generalized bi-
lateral decomposition (GreBdec) of the convolutional layer.
Kim et al. (Kim et al. 2015) proposed an iterative method
of Tucker based decomposition and fine-tuning to regain
the original accuracy. Much recently, Li et al. (Li et al.
2020) proposed a single formulation to easily switch be-
tween channel pruning and weight decomposition, by ap-
plying group sparsity across the columns or the rows of the
weight tensor, respectively.

There are some inherent challenges with directly consum-
ing some of the existing solutions on model optimization.

Firstly, it is very difficult to measure the maximum percent-
age of achievable compression, such that the accuracy does
not drop below an admissible threshold. Ye et al. (Ye et al.
2019) discuss these different challenges as a trade-off be-
tween model robustness and model compression. Secondly,
the computational and resource requirements for model dis-
tillation and architecture search are very high. Especially,
Liu et al. (Liu et al. 2018) argued that it is more valuable
to search for the pruned architecture shape instead of prun-
ing the unimportant weight values and channels. Thirdly, it
is not trivial to identify the rank of the low-rank approxima-
tion of the decomposable tensors.

3 System Architecture and Design
In this section, we describe the high-level solution architec-
ture of Neutrino framework which contains four important
components: (i) Neutrino Zoo, (ii) conductor, (iii) high-level
coarse compression by exploration, and (iv) fine-grained ag-
gressive compression by annealing. We focus on the system
design from the end-users’ usability perspective. In this pa-
per, we restrict the scope to optimizing convolutional neural
networks (CNN) models for classification and object detec-
tion applications.

Neutrino Zoo
The end-user provides the following inputs to the frame-
work: (a) a pre-trained model, M , (ii) the actual train-test
data split used to train the model, DLtrain and DLtest,
and (iii) a set of constraints or requirements to guide the
optimization. The data pre-processing and data preparation
steps performed during the original model training has to
be reproduced in the provided data loaders. The pre-trained
model and data loaders could be borrowed from any pub-
lic github repository or any custom variant designed by the
end-user. However, to ease the use of the end-user, a collec-
tion of popular DNN architectures with trained weights on
different benchmark datasets are provided as Neutrino Zoo.
The zoo consists of various classification and object detec-
tion datasets such as: MNIST, CIFAR10, CIFAR100, VWW,
ImageNet, ImageNet10 (a 10-class subset of ImageNet),
ImageNet16 (a 16-class subset of ImageNet), VOC2007,
VOC2012, and COCO2017. Also, over 20 trained DNN
models are available including variants of ResNet, VGG,
MobileNet, Inception, DenseNet, ShuffleNet, MLP, SSD
with VGG/ MobileNet backbones, and YOLO-v3. The avail-
ability of the Neutrino Zoo allows the end-users to easily and
quickly use the framework for transfer learning.

Conductor
The purpose of the conductor is to collect all the provided in-
puts, understand the given requirements, and orchestrate the
entire optimization pipeline, accordingly. The constraints to
guide the optimization are provided by the end-user and the
conductor automatically orchestrates the pipeline, by addi-
tionally inferring the model and data properties. Some of the
common configurable parameters are:

1. delta: The acceptable tolerance of accuracy drop with re-
spect to the original model, for example, 1%.
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Figure 2: An overview of the architecture design highlighting the key components of the Neutrino framework.

2. stage: The two different stages of compression, while
stage 1 is less intensive compression requiring fewer com-
putational resources, stage 2 provides more aggressive
compression using more resources and time.

3. device: Perform the entire optimization and model infer-
ence in either CPU, GPU, or multi-GPU (distributed GPU
environment).

4. modularity: The end-user can customize multiple parts
of the optimization process for Neutrino to adapt over
more complex scenarios. Support for customization goes
beyond vanilla classification, including specialized dat-
aloader, custom backpropagation optimizer, and intricate
loss function that their native library implementation al-
lows.

Let the pre-trained model has N optimizable layers:
{L1, L2, ..., LN}. In a typical CNN model, the convolu-
tional layers and the fully connected layers are optimiz-
able while the rest of the layers are ignored from the op-
timization process. The conductor analyzes the data size,
number of output classes, model architecture, and optimiza-
tion criteria, delta, and produces a binary composed list,
CL = {c1, c2, ..., cN}, where ci ∈ {0, 1}. The conductor
identifies the subset of optimizable layers that needs to be
optimized, marked as 1, and the layers that has to be frozen
throughout the process, marked as 0. This information is
passed forward to the exploration stage, where the subset
marked as 1 is optimized.

Stage 1: Exploration
In a convolutional neural network, every optimizable layer,
Li projects the input data into different dimensional outputs,
as follows,

Li =⇒ ỹi = f(Wi ⊗Xi) (1)

where Wi is the kernel parameters of the layer, Xi is the
input, ỹi is the output, and f is usually a non-linear activa-
tion function such as ReLU, sigmoid, or tanh, and ⊗ is the
projection function.

Transforming Layers:
A transformation function is applied to every optimizable
layer of the Convolutional Neural Network. This transfor-
mation function is designed to ensure that it approximates

the original projection, Li while reducing the number of pa-
rameters of the layer.

An n-D tensor can be viewed as a linear combination
of multiple 1-dimensional vectors using variable-separable
method. For a layer having a parameters as a 4-D tensor of
the shape [width× height× in shape× out shape], the fol-
lowing transformation function is applied,

Wi(w, h, in, out) =

R∑
r=1

W
(1)
i (w; r)W

(2)
i (h; r)W

(3)
i (in; r)W

(4)
i (out; r) (2)

with a canonical small-size r. During the forward pass, the
transformation function of Li is performed as follows:

f(Wi ⊗Xi) =⇒ f(W
(1)
i W

(2)
i W

(3)
i W

(4)
i ⊗Xi)

=⇒
R∑

r=1

w
(4)
i ⊗

(∑
a

w
(1)
i ⊗

(∑
b

w
(2)
i ⊗(

in∑
c=1

w
(3)
i ∗ xi(a, b, c)

) (3)

This transformation function reduces the number of layer
parameters from (w * h * in * out) to small size* (w + h +
in + out).

For a layer for which Wi is a 2-D matrix of the shape
[in shape × out shape], the transformation function is de-
signed, as follows,

Wi(in, out) =
R∑

r=1

W
(1)
i (in, r)W

(2)
i (r, r)W

(3)
i (out, r)

(4)
where, r is the near-optimal small-size approximation of the
original matrix. Thus, the layer’s forward pass Li is replaced
as follows,

f(Wi ⊗Xi) =⇒ f((W
(1)
i W

(2)
i W

(3)
i )⊗Xi)

=⇒ f(W
(1)
i (W

(1)
i W

(1)
i ⊗Xi))

(5)

This reduces the overall number of parameters of Li from
(in*out) to small size * (in + out).

The challenge is to find an ideal small-size approximation,
r, that produces good compression retaining the robustness
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of the model. When the near-optimal small-size is equal to
the actual size of the weight tensor, r = small size(Wi),
there is an over-approximation of the transformation with
very low compression. A very small size, r −→ 0, produces
a high compression, however, with a lossy reconstruction of
the transformation. The exploration stage searches for the
near-optimal r, a lower size approximation of the tensor, Wi,
such that there is minimal loss of the transformation function
of the layer, Li.

During the exploration stage, the composed list CL =
{c1, c2, ..., cN} is updated, where Neutrino selects differ-
ent transformation functions for different convolutional and
fully connected dense layers. The entire model is optimized
by the designed composition and the accuracy is regained by
performing fine-tuning. The fine-tuning is performed using
the same train-test data split used while pre-training the orig-
inal model. The conductor checks if the optimized model
adheres to the termination requirements as provided by the
end-user, and if not, the composition list is updated and the
next round of optimization is performed.

Stage 2: Annealing
Stage 2 optimization aims to perform aggressive compres-
sion and to obtain the maximum possible compression in the
required tolerance of accuracy. For example, if the delta of
accuracy is 1%, and stage 1 produces a 4x compression with
an accuracy drop of 0.6%, the aim of stage 2 is to further
the compression with the delta going as close as possible
to 1%. In stage 2, the composed list CL = {c1, c2, ..., cN}
of different layers is frozen, while the extent of optimiza-
tion for each layer is increased. Annealing is a metaheuristic
approach to approximate global optimization. By increas-
ing the temperature of each layer, the overall energy of the
model is preserved while finding a smaller size, r that better
approximates the global optima.

The entire pipeline of Neutrino framework could be exe-
cuted in a distributed multi-GPU environment, to speed-up
the time required for optimizing the model. To achieve this,
Uber’s Horovod5 (Sergeev and Del Balso 2018) an open-
source library is reused. Horovod supports different back-
end libraries including PyTorch and Tensorflow, and is easy
to use and integrate.

4 Experimental Results and Analysis
In this section, we experimentally showcase the performance
of the Neutrino in optimizing different CNN models. The
different metrics used to evaluate the extent of optimization
are explained, along with the experimental protocol.

Metrics
There are different metrics used to measure the amount of
optimization and performance of Neutrino, as follows:

1. Accuracy: The top-1 accuracy (%) or the equivalent per-
formance objective of the model is measured. Successful
optimization retains the accuracy of the original model.

5https://eng.uber.com/horovod/

2. Model Size: The disk size (MB) occupied by the trainable
parameters of the model. Lower model size enables mod-
els to be deployed into devices with memory constraints.

3. MACs: The computational complexity of the model
is measured by the number (billions) of Multiply-
Accumulate Operation (MAC) computed across the layers
of the model. The lower the number of MACs, the better
optimized is the model.

4. Number of Parameters: Total number (millions) of
trainable parameters (weights and biases) in the model.
Optimization aims to reduce the number of parameters.

5. Memory Footprint: The total memory (MB) required
to perform the inference on a batch of data, including
the memory required by the trainable parameters and the
layer activations. A lower memory footprint is achieved
by better optimization.

6. Execution Time: The time (ms) required to perform for-
ward pass on a batch of data. Optimized models have a
lower execution time.

Experimental Protocol
The results are shown using several different popular CNN
models against three different benchmark datasets: CIFAR-
100, ImagetNet16, and Visual Wake Words (VWW). All the
optimization experiments are run with an end-user require-
ment of accuracy delta of 1%. The experiments are executed
with a mini-batch size of 1024, while the metrics are nor-
malized for a mini-batch size of 1. All the experiments are
run on four parallel GPU, using horovod, and each GPU
is a Tesla V100 SXM2 with 32GB memory. The standard
train-test split is used for the experiments. The images are
z-normalized with global mean and variance computed from
the training data. To make the training more robust, data aug-
mentation is performed using random cropping of 80% with
resizing and random horizontal flip.

Result Analysis
The optimization results obtained using Neutrino across
different popular CNN models on CIFAR-100 dataset are
shown in Table 1 and the results of ResNet-18 architec-
ture on different large scale vision datasets are shown in
Table 2. From Table 1, it can be observed that the differ-
ence between the original and the final optimized model
is less than 1%, based on the provided delta requirement.
Depending on the architecture of the original model, it can
be observed that the model size could be compressed any-
where between ∼3x to ∼30x. VGG19 is known to be one
of the highly overparameterized CNN models, and as ex-
pected, achieved a 29.22x reduction in the number of param-
eters with almost ∼12x compression in the overall memory
footprint and ∼8.3x reduction in computation complexity.
The resulting VGG19 model occupies only 2.6MB as com-
pared to the original model requiring 76.6MB. Mobilenet ar-
chitectures are specifically designed to be lightweight with
low computational cost, and even in Mobilenet v1, Neutrino
achieved a size compression of 2.78x with only 0.4% reduc-
tion in accuracy. In a GPU environment, a speedup of around
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Architecture Model Accuracy
(%)

Size (MB) MACs
(Billions)

#Params
(Millions)

Memory Foot-
print (MB)

Execution
Time (ms)

Resnet18

Original 76.8295 42.8014 0.5567 11.2201 48.4389 0.0594
Stage1 76.7871 7.5261 0.1824 1.9729 15.3928 0.0494
Stage2 75.8008 3.4695 0.0790 0.9095 10.3965 0.0376
Enh -0.9300 12.34x 7.05x 12.34x 4.66x 1.58x

Resnet50

Original 78.0657 90.4284 1.3049 23.7053 123.5033 3.9926
Stage1 78.7402 25.5877 0.6852 6.7077 65.2365 0.2444
Stage2 77.1680 8.4982 0.2067 2.2278 43.7232 0.1772
Enh -0.9400 10.64x 6.31x 10.64x 2.82x 1.49x

VGG19

Original 72.3794 76.6246 0.3995 20.0867 80.2270 1.4238
Stage1 71.5918 3.3216 0.0631 0.8707 7.5440 0.0278
Stage2 71.6602 2.6226 0.0479 0.6875 6.7399 0.0263
Enh -0.8300 29.22x 8.34x 29.22x 11.90x 1.67x

DenseNet121

Original 78.4612 26.8881 0.8982 7.0485 66.1506 10.7240
Stage1 79.0348 15.7624 0.5477 4.132 61.8052 0.2814
Stage2 77.8085 6.4246 0.1917 1.6842 48.3280 0.2372
Enh -0.6500 4.19x 4.69x 4.19x 1.37x 1.17x

GoogleNet

Original 79.3513 23.8743 1.5341 6.2585 64.5977 5.7186
Stage1 79.4922 12.6389 0.8606 3.3132 62.1568 0.2856
Stage2 78.8086 6.1083 0.386 1.6013 51.3652 0.2188
Enh -0.4900 3.91x 3.97x 3.91x 1.26x 1.28x

Mobilenet v1

Original 66.8414 12.6246 0.0473 3.3095 16.6215 1.8147
Stage1 66.4355 6.4211 0.0286 1.6833 10.5500 0.0306
Stage2 66.6211 3.2878 0.017 0.8619 7.3447 0.0286
Enh -0.4000 3.84x 2.78x 3.84x 2.26x 1.13x

shufflenet v2 1 0

Original 69.9805 5.1731 0.0462 1.3561 12.3418 0.0357
Stage1 68.9844 3.2792 0.0285 0.8596 10.8947 0.0361
Stage2 69.3262 1.9315 0.016 0.5063 9.3258 0.0344
Enh -0.6500 2.68x 2.89x 2.68x 1.32x 1.04x

Table 1: Performance on different metrics obtained after multiple stages of optimization on the CIFAR-100 dataset, validating
the enhancement (Enh) obtained using the proposed framework. All the results are computed for an input delta accuracy of 1%.

Dataset Model Accuracy
(%)

Size (MB) MACs
(Billions)

#Params
(Millions)

Memory Foot-
print (MB)

Execution
Time (ms)

Imagenet16

Original 94.4970 42.6663 1.8217 11.1847 74.6332 0.2158
Stage1 93.8179 3.3724 0.5155 0.8840 41.0819 0.1606
Stage2 93.6220 1.8220 0.3206 0.4776 37.4608 0.1341
Enh -0.8800 23.42x 5.68x 23.42x 1.99x 1.61x

VWW

Original 93.5995 42.6389 1.8217 11.1775 74.6057 0.2149
Stage1 93.8179 3.3524 0.4014 0.8788 39.8382 0.1445
Stage2 92.6220 1.8309 0.2672 0.4800 36.6682 0.1296
Enh -0.9800 23.29x 6.82x 23.29x 2.03x 1.66x

Table 2: Performance of the ResNet18 model against multiple large scale datasets, validating the enhancement (Enh) obtained
using the proposed framework. All the results are computed for an input delta accuracy of 1%.

∼1.5x is observed. This could significantly impact the in-
ference time on the model, especially on the edge devices,
and also the fine-tuning time required in future versions of
production releases. The performance of Neutrino on large
scale vision datasets produces around ∼23.5x compression
of ResNet18 on Imagenet16 and VWW datasets. The opti-
mized model requires only 1.8MB as compared to 42.6MB
required by the original model. There is more than ∼1.6x
in speedup with 5.7 − 6.8x reduction in the computational
complexity of the model. Crucially, it can be observed that

Stage 2 compresses the model at least 2x more than Stage 1
compression.

Time Taken for Optimization
The overall time taken for optimization by Neutrino, in-
cluding Stage 1 and Stage 2, is shown in Figure 3. It can
be observed that most of the models could be optimized
in less than ∼2 hours. While complex architectures, with
longer training times, such as Resnet50 and DenseNet121
take around ∼6 hours and ∼13 hours for optimization, re-
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Figure 3: The total time taken for optimizing various models
and the amount of compression achieved against CIFAR-100
dataset, using Neutrino framework.

Figure 4: The proportion of time taken in optimization and
the amount of compression, between Stage 1 and Stage 2 of
optimization in the Neutrino framework.

spectively. The comparison between the time taken for stage
1 and stage 2 compression is visually shown in Figure 4.
It can be observed that almost 60 − 70% of the overall op-
timization is achieved in Stage 2, while Stage 1 consumes
less than ∼40% of the overall time required. This differenti-
ation acts as a key feature of Neutrino, where end-users who
need quick optimization with less resource consumption can
choose Stage 1, while those needing aggressive optimization
can choose Stage 2 optimization.

It can be experimentally observed that Neutrino could be
generalized across all kinds of CNN architectures and all
scales of datasets with varying number of classes. Neutrino
uniformly provides high metrics of optimization across all
these datasets.

5 Business Impact
Our blackbox optimization framework has been deployed
into multiple real-world applications and has been consumed
by different clients. From different chip manufacturers en-
abling edge deployment of DNN architectures, to a faster
inference of computer vision models on the cloud, the Neu-
trino framework could cater to a wide variety of use-cases.
Some of the key real-world use-cases, where Neutrino is cur-

rently deployed in production are:

• Smart Appliances: More than 100 million home appli-
ances currently use ARM on Raspberry Pi 4 with only
2GB memory. To enable on-device, AI-driven, automated
gesture recognition, Neutrino is used to compress Mo-
bileNet variant architectures by almost ∼2.5x.

• Person Detection: An embedded system with a small
camera which uses RISC-V CPU cores (Waterman et al.
2011), is used as a home assistant alarm, by doing per-
son detection. To enable very large DNN architectures to
be deployed on these CPU cores, Neutrino framework is
used to achieve up to ∼68x compression.

• Autonomous Driving: To enable autonomous self-
driving cars, it is needed to perform real-time object de-
tection with a highly noisy background. A highly complex
DNN architecture: SSD-300 with ResNet50 as the back-
bone is used to accomplish object detection. However, for
this large DNN model to be deployed inside an NVIDIA
Xavier GPU, Neutrino framework is used to achieve ∼3x
compression, along with∼3x speedup, and∼3x in power
reduction, with no reduction in accuracy.

The results obtained from the real-world deployments
across various use-cases are shown in Table 3. It can be ob-
served from the results that across different production envi-
ronments, use-cases, models, and datasets, the Neutrino can
be generalized for successful compression of models. De-
pending on the application requirements, Neutrino produces
anywhere between∼2x to∼68x compression, with less than
∼1% accuracy reduction from the original model. Also,
in the same production environments, Neutrino was com-
pared with competitive optimization frameworks such as
Microsoft’s Neural Network Interface (NNI)6, Intel’s Neu-
ral Network Distiller7, and Tensorflow Lite Micro8. It can
be observed that Neutrino consistently outperforms the com-
petitors by achieving higher compression with better accu-
racy. As a testimonial to the success and usability, Neutrino
framework has received several accolades and media cover-
age, some of which are listed here:

• Neutrino and the parent company Deeplite has been
named the AI 100, one of the top 100 AI companies
globally, by CB Insights9. CB Insights platform annually
chooses the list from a candidate set of more than 5000
companies, with technical novelty being one of the pri-
mary criteria. Also Intel Capital, in their AI infrastructure
stack landscape 10, has identified Deeplite and Neutrino
, as one of the few production-ready optimization frame-
works available in the market today.

• In a joint partnership, Deeplite and Andes Technologies
used Neutrino to deploy optimized DNN models on the

6https://github.com/microsoft/nni
7https://github.com/NervanaSystems/distiller
8https://www.tensorflow.org/lite/microcontrollers
9https://www.cbinsights.com/research/artificial-intelligence-

top-startups/
10https://www.intel.com/content/www/us/en/intel-capital/news/

story.html?id=a0F1I00000BNTXPUA5
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Client Model Dataset Method Acc. (%) #Params (M) Size (bytes) FLOPS (M) Time
(ms)

Andes Mobile-
NetV1

VWW
Original 88.1 3.2085 12,836,104 105.7 -

Neutrino 87.6 0.1900
(16.88%)

188,000
(68x) 24.6 -

TFLM 84.0 0.2134
(15.03%)

860,000
(14.9x) - -

Prod#1
Mobile-
NetV2-
0.35x

Imagenet
Small

Original 80.9 0.4093 1,637,076 66.50 1.64

Neutrino 80.4 0.1688
(58.76%)

675,200
(2.4x) 50.90 1.87

Intel Dis-
tiller

80.4 0.2562
(37.41%)

1,637,076
(1x) 66.50 1.59

Microsoft
NNI

77.4 0.2851
(30.35%)

1,140,208
(1.43x) 52.80 2.22

Prod#2
Mobile-
NetV2-
1.0x

Imagenet
Small

Original 90.9 2.2367 8,951,804 312.8 4.14

Neutrino 82.0 0.4254
(80.98%)

1,701,864
(5.26x) 134.00 4.2

Intel Dis-
tiller

82.0 0.2983
(86.66%)

8,951,804
(1x) 312.86 4.4

Prod#3
Mobile-
NetV2-
0.35x

Gesture
Recog-
nition

Original 96.8 2.3630 10,500,000 559.60 706

Neutrino 96.8 0.5525
(76.62%)

2,199,200
(4.77x) 508.20 611

Prod#4 SSD300
(ResNet50) COCO-10 Original 0.438 (mAP) 14.17 56,734,728 15.59 3.98

Neutrino 0.433 (mAP) 4.84
(2.93x)

19,365,488
(2.93x) 5.254 2.76

Table 3: Results from different production applications and business use-cases of Neutrino framework. It can be observed that
in many practical real-world applications Neutrino performs better than other competitive optimization frameworks. The results
are computed across different hardware deployments. The names of certain clients and production environments are redacted
for anonymization.

first commercial RISC-V cores based on AndeStar V5 ar-
chitecture11. In a specific use-case, a MobileNet-v1 model
trained on a Visual Wake Words (VWW) dataset was
compressed from 13MB to only 688KB (∼68 times com-
pression) with less than 1% drop in accuracy. Accord-
ing to Dr. Charlie Su, CTO and Executive VP of Andes
Technology, “Deeplite has provided a solution that can
be leveraged both internally within Andes as well as for
our customers to bring deep learning on Andes RISC-V
CPU cores to resource-limited devices at the edge.”

• Using Neutrino framework large DNN architectures are
currently being optimized and also deployed in ARM mi-
crocontrollers12. In a specific-use case of low-power cam-
era, the underlying ARM Cortex-M4 has a memory re-
source constraint of only 256KB on-chip memory. Au-
tomatically guided by the memory constraint, Neutrino
compressed a 13MB large DNN architectures to only
144KB (∼88 times compression) with less than 1.84%
accuracy drop as compared to the original model.

There is CI/CD based DevOps pipeline, with a monthly

11https://www.prnewswire.com/news-releases/andes-
technology-and-deeplite-inc-join-forces-to-deploy-highly-
compact-deep-learning-models-into-daily-life-300972366.html

12https://community.arm.com/developer/ip-products/
processors/b/ml-ip-blog/posts/unlocking-ai-on-arm-
microcontrollers-with-deep-learning-model-optimization

sprint delivering product enhancements, software patches,
and bug fixes. There is a committed core team of eight tech-
nical developers (and growing fast) with diverse skills, to
lead and support new features and new client deployments.

6 Conclusion and Future Work
In this paper, we proposed an easy-to-use blackbox frame-
work for DNN model optimization, Neutrino. The frame-
work is completely automated and could be used to optimize
any convolutional neural network based architecture, with
no human intervention. The end-user could provide the re-
quirements of optimization such as target model size, or the
tolerance drop in accuracy, and Neutrino framework would
produce the optimized model, according to the requirements.
As an experimental validation, the performance of the pro-
posed framework was shown against several benchmark
datasets and popular architectures. Neutrino is currently in
production and is used by several clients for multiple use-
cases such as smart appliances, autonomous driving, or per-
son detection. The success of the framework in production,
along with several testimonials, are showcased. Following
the challenges presented in the first section for model opti-
mization, Neutrino is a robust and early solution that only
scratches the surface. Therefore, some of the ongoing and
future work has much potential to offer, such as being more
target hardware aware and further improving compression
and speed-up by using techniques.
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