
A Novel AI-based Methodology for Identifying Cyber Attacks in Honey Pots

Muhammed AbuOdeh1, Christian Adkins1, Omid Setayeshfar2, Prashant Doshi1, Kyu H. Lee2
1 THINC Lab,

2 Institute for Cyber Security and Privacy
Department of Computer Science, University of Georgia, Athens GA 30606

pdoshi@uga.edu

Abstract

We present a novel AI-based methodology that identifies
phases of a host-level cyber attack simply from system call
logs. System calls emanating from cyber attacks on hosts such
as honey pots are often recorded in audit logs. Our methodol-
ogy first involves efficiently loading, caching, processing, and
querying system events contained in audit logs in support of
computer forensics. Output of queries remains at the system
call level and is difficult to process. The next step is to infer
a sequence of abstracted actions, which we colloquially call
a storyline, from the system calls given as observations to
a latent-state probabilistic model. These storylines are then
accurately identified with class labels using a learned clas-
sifier. We qualitatively and quantitatively evaluate methods
and models for each step of the methodology using 114 dif-
ferent attack phases collected by logging the attacks of a red
team on a server, on some likely benign sequences containing
regular user activities, and on traces from a recent DARPA
project. The resulting end-to-end system, which we call Cy-
berian, identifies the attack phases with a high level of accu-
racy illustrating the benefit that this machine learning-based
methodology brings to security forensics.

Introduction
Automatically identifying the phases of a cyber attack on a
host is of significant import. It facilitates automated forensics,
which leads to faster attack discovery, damage assessment,
and ultimately prevention. It also represents a key step toward
better understanding the intent of the attacker. This paves the
way for the defender to engage the attacker in more effective
cyber-deception techniques on honey pots. However, this
capability is made difficult by the fact that the individual
attack steps are often common between different types of
attacks, and the attack activity, if logged, is buried within
massive system call logs that are hard to sift through.

A step toward addressing this challenge is development of
host-based intrusion and anomaly detection systems (Cheva-
lier 2019), which alert defenders about anomalies in system
behavior that may indicate malicious activity. For example,
a recent technique named DeepLog (Du et al. 2017) demon-
strated feasibility of using deep learning to detect anomalous
behavior based on low-level log data. However, DeepLog and

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

similar systems generally lack the capability to identify attack
phases, which is usually left to a human security analyst.

We present a novel machine learning (ML) based method-
ology that automatically identifies phases of cyber attacks
on a single host system such as a honey pot. Our methodol-
ogy involves the following general steps: (i) Efficiently load,
cache, process, query, and display system events from audit
logs to support computer forensics. Output of queries should
be provenance graphs, which can be processed for further
analysis. (ii) Resulting trace is often still hard to parse and
in need of further abstraction to facilitate analyses. Utilize a
latent-state probabilistic model, which allows us to infer the
most likely sequence of higher-level actions, which we call
an attack storyline, while modeling system calls as observa-
tions. (iii) Finally, we seek to identify the attack phase based
on the sequence of high-level actions inferred in the previous
step. We view this step as a multi-class classification problem
where each label is a phase of an attack.

Classifying cyber attacks has been explored before. In
early work, Lippmann et al. (2000) analyzed intrusion detec-
tion performances of various rule-based systems on network
log data containing both benign and malicious activity, which
included labeling segments corresponding to low-level attack
types. The results highlight the limitations facing rule-based
detection toward attack identification. Bolzoni, Etalle, and
Hartel (2009) paired anomaly detection with machine learn-
ing to classify attack types based on n-gram analysis of attack
payloads. These and other similar works classifying types of
attacks tend to be rule based and ignore the significant overlap
between various attacks, which often share steps. Many face
the well-documented rule-based limitation of being inflexible
to changes in both benign and malicious behaviors in the dy-
namic realm of cyber security. Others focus on classifying an
entire attack campaign (instead of intermediate attack phases)
where accurate identification of later-occurring phases relies
on successful identification of earlier phases.

Another system named HOLMES (Milajerdi et al. 2019)
focuses on detecting anomalies as phases of advanced and
persistent threats. HOLMES also uses a rule-based system
for classifying attack phases and relies on a large amount of
benign log training data to reduce false positives in the testing
data. In contrast to the rigidity of such rule-based systems,
our ML-based methodology can learn and adapt to identify
several attack phases as long as some system call logs for

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15224

these phases exist to use during training. This is enabled by a
key innovation of the methodology: the inference of attack
storylines as an intermediate step.

To translate our methodology to practice, we qualitatively
or quantitatively evaluate each step with candidate methods or
models. An independent red team simulated several types of
attacks on a server acting as a honey pot. This yielded a total
of 114 attack phases, which included asset discovery and data
exfiltration, among others. The pipeline of selected models
lead to a system, which we call Cyberian, that performs
very well in identifying the attack phases as measured by
an F1-score of 90.31± 8.44. Additionally, we test on a few
attack sequences discovered in a recent data set released by
DARPA. An out-of-class evaluation of the learned models to
test how well Cyberian can distinguish between malicious
sequences and those that are likely benign is also performed.

Attack Phase Abstraction and Classification
Our methodology is useful to areas of cybersecurity called cy-
ber forensics or cyber crime investigation. Tools for forensics
predominantly rely on log records to understand behavior of
attackers, whether at application level (web server logs) or at
system level (system call logs). A key challenge for analyzing
logs is their enormity – a typical computer produces more
than 10K low-level logged events each minute. While higher
level logging may produce more understandable events, these
sacrifice detail and introduce heterogeneity due to diverse
events emitted by different programs in the system. On the
other hand, lower level system logs provide detail and homo-
geneity, but extracting meaningful abstractions from them
has been difficult. Our initial focus is to perform the forensics
on honey pots, which are hosts masquerading as important
systems in a subnet intended to deceive attackers by consum-
ing their attack resources. As these hosts are not in regular
use, there is less benign activity and the log entries largely
capture unauthorized intrusions and subsequent activity.

Provenance of System Calls
The first objective is to extract an attack-focused sequence of
system calls from low-level system call logs and generate the
provenance graph. Each sequence represents an attack phase,
such as data exfiltration or privilege escalation. Generating
the provenance graphs in this step is crucial to the rest of the
methodology. We identify several desiderata that contribute
toward ways for successfully generating these graphs:
• Schema flexibility by allowing varied log formats
• Online pattern matching or live monitoring and tracking

on streaming log data
• Backward and forward tracing on provenance – especially

on long sequences along with a graphical representation
• Support for a granularity smaller than the process
• An intuitive query language and interface that goes beyond

simple keyword-based filtering to isolate key events in logs
• Automated anomaly detection capabilities
• Open source version available to facilitate wider adoption

We utilize these desiderata to qualitatively compare several
more prominent log analysis systems that are currently avail-
able. These include systems such as Carbon Black’s LiveOps

Title S PG F O G Q A
AIQL × � × × × � ×
Carbon Black LiveOps � � × × × � �
GrAALF � � � � � � ×
NoDoze × � × × × × �
Plaso + Elastic × × � � × � �
SAQL � � × × × � ×
SOF ELK × × � � × � �

Table 1: We denote S for streaming analysis, PG for prove-
nance graph forward and backward tracing, F for flexibility
in schema, O for open-source, G for supporting granularity
smaller than process, Q for querying ability of the graph, and
A for intelligent anomaly detection. × shows lack of support,
� shows limited support, and � shows full support.

that are proprietary and commercially available only as well
as Plaso and Elastic (Project 2019), AIQL (Gao et al. 2018b),
SAQL (Gao et al. 2018a), and SOF ELK (Lewes 2019). Ta-
ble 1 shows this comparison in a concise format; more details
about each of the systems is available in its reference.

GrAALF (Setayeshfar et al. 2019), a new general-purpose
query system, offers good support on several desiderata but
lacks advanced anomaly detection which makes some hu-
man involvement necessary. Regardless, it may serve well to
instantiate this step of the methodology using GrAALF.

Inferring Attack Storylines
System call logs, even extracted by GrAALF, tend to be exten-
sive and incomprehensible. For example, some large attack
phase files contain 10,154 records occupying up to 2.2MB.
This makes manually parsing and understanding attack steps
tedious. Resulting traces are often still hard to parse and need
further abstraction to facilitate analysis. Logged system calls
may be perceived as a sequence of observable signals nois-
ily emitted by a dynamic system as an adversary performs
an attack. Thus, we may infer the most likely sequence of
higher-level actions given these observations. This suggests
modeling the probabilistic action recognition problem using
classical latent-state graphical models. The sequence of ab-
stracted actions is the most-likely explanation (MLE) inferred
by the model for the observed sequence of system calls.

We note that the same system calls often appear in dif-
ferent attack sequencesand perform similar functions. For
example, the sequence involving sh executing a temporary
process which then executes another shell is present in attack
phases such as system reconnaissance and persistence. This
sequence is indicative of the attacker’s shell launching a tem-
porary process which then starts another shell. Furthermore,
we may not distinguish between various temporary processes
for the purpose of generally understanding and identifying
attack phases. Consequently, a relatively small number of
distinct abstracted actions suffice to comprehensibly explain
various attack phases at a higher level. These abstracted ac-
tions form hidden states of latent models, and a categorized
listing of some candidate states is given in Table 2. For a
given (cleaned) sequence of system calls, we refer to the
sequence of states inferred by the model as its storyline.

15225

Start states
Bash execute process

Execute process (by non bash process)
Init server daemon

System
operation states

System operation
Generic process read write
Generic process operation

Netapp operation
Bash operation

Server daemon operation
File operation

Information
states

System information
Library state

Network states

Process upload download
Netapp upload download
Daemon upload download

Server download
Server upload

Table 2: Categorized list of candidate states for latent-state
probabilistic model representing abstracted actions. Column
four of Table 4 relates some states to system call events.

Probabilistic graphical models such as hidden Markov
models (HMM) (Rabiner 1989) and conditional random fields
(CRF) (Lafferty, McCallum, and Pereira 2001) can infer ab-
stracted actions corresponding to system calls as these models
allow a sequence to be tagged with labels based on context.
While HMMs and linear-chain CRFs share many similari-
ties, HMMs tend to be simpler to learn from data and do not
require handcrafted feature functions characteristic of CRFs.

Prior use of probabilistic models such as HMMs in cyber-
security has mainly addressed intrusion detection (Liu et al.
2018). For example, Garcia et al. (2012) use an HMM and
k-means for detecting malicious activity, while Wang, Guan,
and Zhang (2004) use an HMM to determine whether a se-
quence exceeds a certain threshold, thus classifying it as an
attack. In Radhakrishna, Kumar, and Janaki (2016), the aim
is to identify intrusions using temporal pattern mining. In-
trusion detection usually does not involve analyzing specific,
actionable observations and identifying the attack phases.

Identifying Attack Phases
Each storyline details the logical steps comprising an attack
phase. We may view storylines as time series’ and the prob-
lem of identifying the corresponding attack phase as multi-
class classification. Subsequently, storylines serve as input
for a machine learning classification model. Storylines are
composed of sequential contexts with temporally extended
dependencies. Such dependence is likely a factor within such
complex, lengthydata as attack logs. Therefore, our primary
model hypothesis is a Long Short-Term Memory (LSTM)
neural network (Hochreiter and Schmidhuber 1997).

As alternative candidate classification models, a 1-
dimensional convolutional neural network (CNN) and a sim-
pler linear support vector machine (SVM) may be explored.
Sequential contexts like storylines often contain very simi-
lar repeated sub-sequences common among instances within
each class. 1D convolution is a common method in time-
series data analysis and has frequently been used in various

Attack phase Count
system reconnaissance 39
persistence 12
privilege escalation 14
asset discovery 16
data exfiltration 14
network discovery 19

Table 3: Distribution of various attack phases in our data set.

previous works related to classification (Lee, Yoon, and Cho
2017; Zhang, Zhao, and LeCun 2015), and serves as one
performance baseline for the classification stage. Joachims
(1998) discusses suitability of SVMs for text classification,
for which they have been used extensively. SVMs, being sim-
pler models, benefit from fewer parameters thereby requiring
less manual design. Indeed, the only parameters that usually
require testing are kernel (linear vs non-linear, with some
variations) and maximum number of iterations for training.

A classification model trained to perform multi-class clas-
sification on each attack storyline represents the last step of
the methodology. The resulting output from this step is the
identified attack phase. This model’s performance ultimately
demonstrates the instantiated method’s ability to extract high-
level information from the granular and extensive logs.

Performance Evaluation
To realistically evaluate our methodology, an independent
red team of cyber security researchers assisted by Metas-
ploit (Rapid7 2020), a well-known penetration testing tool,
engaged in several attacks on a Linux server over a few days.
These attacks yielded 114 phases, each of which is one of six
popular types (based on sequence of system calls executed
by attacker in each phase). Attack phase types, informed in
part by MITRE’s ATT&CK matrix (Strom et al. 2018), are:
1. system reconnaissance: gather information about system,

including OS version and user account information;
2. persistence: attacker implements measures to maintain

access even after a system restart;
3. privilege escalation: attacker attempts to gain root or

higher access on the victim machine;
4. asset discovery: search for assets such as sensitive files

on a system;
5. data exfiltration: attacker transfers data out;
6. network discovery: attacker explores different connec-

tions made to/from the victim machine.
The distribution of these types is shown in Table 3.

Each attack is logged using Sysdig on the honey pot server.
GrAALF automates online monitoring by pre-defining a set
of query templates similar to predefined rules. Once the user
specifies the system and sensitive files to be monitored, a set
of queries derived from templates are deployed by GrAALF.
For instance, for monitoring a modification of a sensitive
file, the following query is used by GrAALF “back select
write from file where name is X” where ‘X’ represents file
name of interest. To monitor for potential access to IP ranges
outside the local network “back select * from soc where not

15226

System calls generated by GrAALF from name, evt type, and
to name extracted from sys-
tem calls

Processed system
calls, in the form
from name→
evt type→ to name

Abstracted actions
(HMM states)

{ ”sequence number”: 12125, ”user”: ”www-data”,
”from id”: 2398 , ”from name”: ”sh”, ”evt type”: ”exec”,
”to name”: ”perl” , ”to id”:2399 , ”count”: 1}

from name:sh evt type: exec
to name: perl

bash→
exec→ perl

Bash execute
process

{ ”sequence number”: 12530, ”user”: ”www-data”,
”from id”: 2399 , ”from name”: ”perl”, ”evt type”:
”exec”, ”to name”: ”perl” , ”to id”:2400 , ”count”: 1}

from name: perl
evt type: exec
to name: perl

perl→ exec→
perl

Execute process

{ ”sequence number”: 12577, ”user”: ”www-
data”, ”from id”: 1782 , ”from name”: ”apache2”,
”evt type”: ”shutdown”, ”to name”: ”10.0.2.8:44933
→10.0.2.10:80” , ”to id”:13 , ”count”: 2}

from name: apache2
evt type: shutdown
to name: ”10.0.2.8:44933
→ 10.0.2.10:80”

apache2→
close→
remote address

Server daemon
operation

{ ”sequence number”: 12578, ”user”: ”www-data”,
”from id”: 1782 , ”from name”: ”apache2”, ”evt type”:
”read”, ”to name”: ”10.0.2.8:44933→10.0.2.10:80” ,
”to id”:13 , ”count”: 1}

from name:apache2
evt type: read
to name: 10.0.2.8:44933→
10.0.2.10:80

apache2→
read→
remote address

Server download

Table 4: Raw system calls extracted from log files and processed. Column 1 shows system calls recorded by auditing software and
output by GrAALF. Column 2 gives information extracted from system calls, and the third shows format of sequences as passed
on to HMM. A latent-state model may view sequences as being emitted from corresponding states shown in fourth column.

name has 172.16.” where a range of local IP is ‘172.16.*.*’.
GrAALF provides further query templates for process-based
monitoring. For example, ‘nc’ and ‘scp’ processes are fre-
quently used by adversaries to plan a backdoor or to exfiltrate
sensitive data. Query “back select * from * where name is
nc or name is scp” can monitor detailed behavior of such
processes, and their remote hosts can be identified by — “for-
ward select * form * where name is nc or name is scp”. Out-
put of GrAALF’s templated queries is a focused provenance
graph. The engagement and GrAALF’s analysis yielded 25
sequences of system calls which did not belong to any of the
six phases and may be viewed as benign. We utilize these for
a deeper evaluation of learned models. All attack data includ-
ing log files and GrAALF’s output is available for download
at https://tinyurl.com/yy9stomv.

Data cleaning On receiving system call sequences from
GrAALF, individual system calls, such as those shown in
the first column in Table 4, are cleaned to be handled by the
latent-state model. A simple pre-processing step removes
some fields from each log entry as these fields do not contain
information essential to understanding behavior. In particular,
Linux audit logging includes fields such as sequence num-
ber, user name, and various IDs in addition to from name,
evt type, and to name. Values in the first grouptypically do
not speak about the action that was performed, and are
dropped from further analysis. Remaining fields that contain
valuable information for the HMM are from name, evt type,
and to name (see second column of Table 4 for illustration).

We adopt straightforward rules to trim the set of distinct
observations. For instance, diverse shell processes such as sh,
bash, or zsh, are merged into bash as it is the most popular
shell. In some sequences, we observe processes that create
temporary child processes with randomly generated process
names; we rename them to temp process. Table 4 shows a
real audit log and processed logs.

Additionally, we filter out obviously irrelevant and unhelp-

ful log events. For example, if the underlying audit system
fails to extract system or process information, this appears as
〈NA〉, and we filter these out as they do not contain useful
information. We also exclude routine cache and library file
access events (i.e., accesses of .lib and .so files), and unnamed
pipe accesses (i.e., “NULL” and “pipe”).

To preserve readability, we provide the observation in the
triple format from name→ evt type→ to name, where the
from name in the triple is the parent process, the evt type is
what the parent process performs, and to name is the child
process on which the event is performed. For example, bash
→ exec→ nc means that bash executes the process netcat.
This is the third and final step in converting system call
sequences into observations. The third column in Table 4
shows the observation for each system call, respectively.

HMM inference of attack storylines We utilize a stan-
dard HMM for inference. Observations to the HMM are
system calls in an attack phase sequence, cleaned and in
triple format as described above To infer attack storylines
automatically, our aim is to learn transition and emission
probability tables of the HMM from sequences of system
calls in attacks annotated with abstracted actions using a
learning algorithm such as Baum-Welch (Baum et al. 1970).
This requires relating each state to observed system call
triples emitted by the state. For example, the state Dae-
mon upload download emits the system call nmbd →
sendto→ some socket and state Server daemon operation
emits the system call proftpd→ close→ some socket.

A storyline is then the most likely explanation inferred
by the trained HMM for a given sequence of system call
observations. An example short attack storyline inferred
for the asset discovery phase is: (Execute process ircd,
Server daemon operation ircd, Execute process perl,
Execute process perl, System information, Execute pro-
cess perl, Execute process temp process, Execute pro-
cess temp process, System information). The lengths of

15227

Fold Mean LL Mean LL ratio
0 -4.909 ± 0.996 0.938 ± 0.084
1 -4.406 ± 1.566 0.956 ± 0.05
2 -4.586 ± 1.338 0.942 ± 0.071
3 -5.091 ± 0.974 0.95 ± 0.067
4 -4.579 ± 1.549 0.911 ± 0.097

Table 5: Mean and standard deviation of log likelihood and
log likelihood ratio per test fold generated by HMM. Mean
log likelihood across all folds is -4.714, mean ratio is 0.939.

storylines vary from 1 step to more than 5,000.
Cleaned sequences of system calls from GrAALF for 114

attack phases yielded 1176 distinct observations, for which
we utilized an HMM with 17 states as defined in Table 2.
We implemented the HMM using the Pomegranate package
(Schreiber 2017). We evaluate the HMM’s performance using
5-fold cross validation on the annotated sequences in the 114
+ 25 sequences. The HMM is trained using four folds, which
involves learning the transition and emission probabilities
using Baum-Welch with a count-based initialization (Laan,
Pace, and Shatkay 2006) and pseudo counts. The HMM’s fit
and inference of the storyline is evaluated using the fifth fold.

We report log likelihoods of system call sequences in the
five test folds. Each observed attack sequence is passed to the
Viterbi algorithm, which yields the sequence of states that
most likely explains observations. Likelihood is the probabil-
ity that this sequence of states emits the observations. Table 5
shows mean log likelihood (divided by number of steps in the
phase to account for highly varying lengths) for each fold, and
also presence of some sequences of system calls that could
not be predicted with high probability leading to noticeable
standard deviations. In some test folds, the learned HMM
encountered some sequences with previously unseen system
calls. However, small non-zero values at initialization of tran-
sition and emission probabilities and Baum-Welch’s use of
pseudocounts permitted generalization to these sequences.

Having evaluated the model’s fit, next we evaluate cor-
rectness of the inferred storylines. We compare the previous
mean log likelihoods with the mean of log probabilities of
observed sequences in each test fold given the ground truth
assignment of states for a sequence. In Table 5, we also re-
port the means and standard deviations of likelihood ratio

LL of MLE
LL of ground truth while noting that a ratio of 1 is desired. While
no fold gave a perfect ratio of 1, the mean ratio for most folds
is above 0.9 indicating that generated storylines were mostly
correct. Table 6 contains likelihood ratios decomposed by
attack phase. Storylines pertaining to network discovery yield
lowest likelihood ratio because some system calls commonly
seen in several network discovery sequences were consis-

Model Asset
disc.

Sys.
recon.

Exfil N/w
disc.

Persist Priv.
Escal.

HMM 0.957 0.973 0.873 0.846 1.0 0.986

Table 6: Mean log likelihood ratio of the HMM decomposed
by attack phases. The lowest performance is highlighted.

Model Weighted-mean F1
with HMM without HMM

SVM 84.14 ± 12.82 64.79 ± 15.75
CNN 86.32 ± 11.46 14.51 ± 16.30

LSTM 90.31 ± 8.44 47.55 ± 26.03

Table 7: Weighted-mean F1-score (%) and weighted standard
deviation for models with and without storylines. Statistics
obtained by weighting phases’ F1-scores with class sizes.

tently mispredicted by the HMM. As network discovery se-
quences are among the shortest, few errors have a significant
impact. Finally, storylines are passed on for identification.

Classifier evaluation to identify attack phases We de-
sign the recurrent neural network model to embed tokenized
and padded input sequences (length of 5,465), pass result-
ing vectors through two LSTM layers (100 memory units,
dropout of 0.05, recurrent dropout of 0.1), and finally use a
softmax layer to arrive at a probability distribution over attack
phase labels for each input sequence. The CNN takes encoded
and padded storylines through two convolution blocks (32
and 64 filters respectively, kernel sizes of 3, max pooling of 2,
followed by dropout of 0.05), followed by a fully-connected
layer, and finally a softmax output layer producing classi-
fication probabilities. The support vector classifier uses a
simple linear kernel. Various parameters for each model were
explored to determine best configurations, such as different
dropout rates and training epochs and use of class weights.

Our neural network models were implemented in Keras
with TensorFlow backend, while scikit-learn’s SVM imple-
mentation was used. Experiments were performed on a Linux
system with 4 Intel Xeon Skylake processors, 32GB RAM,
and 1 NVDIA P100 GPU. To demonstrate utility of HMM’s
abstraction toward identifying high-level attack character-
istics, we evaluate classifiers in two ways: The first exper-
iment trains for up to 100 epochs (maximum iterations of
20K for the SVM) on ground truth sequences and evaluates
each model’s performance on storylines comprised of states
that the HMM produced for each attack phase. A ground
truth labeled sequence is the sequence of manually annotated
states. In the second, input sequences are system calls di-
rectly coming from GrAALF without being processed by the
HMM; as there are no storylines for this raw data, 5-fold
cross validation was used to evaluate models on this data set
(confusion matrices for each fold were combined to get final
results). Relative results of these tests show how well HMM
predictions reflect true characteristics of each attack phase.

Table 7 gives the weighted-mean F1-score of the classifica-
tion by each of the models in both experiments. First, notice
that the use of storylines as input to the classifiers improves
their accuracy significantly compared to using sequences of
low-level system calls; this improvement is especially large
for the CNN. Among the various classifiers, the LSTM model
achieves a better mean F1-score than the SVM or CNN. The
LSTM operating on attack storylines is able to accurately
identify the type of about 90% of the attack phases. How-
ever, the paired F1-score differences between the LSTM and
the other methods are not statistically significant. Clearly,

15228

Model Asset
disc.

Sys.
recon.

Exfil N/w
disc.

Persist Priv.
Escal.

SVM 74(43) 90(61) 93(50) 62(58) 89(74) 97(36)
CNN 64(90) 90(99) 100(98) 91(99) 89(100) 79(98)
LSTM 73(91) 92(99) 100(99) 94(99) 86(99) 93(99)

Table 8: F1-score (%) of HMM-aided models by attack
phases, and mean confidence on correct classifications (true
positives). Lowest performance for each model is highlighted.

Model Asset
disc.

Sys.
recon.

Exfil N/w
disc.

Persist Priv.
Escal.

SVM 68 90 88 90 80 93
CNN 89 88 100 100 80 68
LSTM 79 92 100 100 75 93

Table 9: Precision (%) of HMM-aided classification models
by attack phases. Lowest performance for each is highlighted.

the process of inferring the most likely explanation of the
observed system calls is very valuable and identification of
the attack phases benefits from reasoning about the context.

Precision and Recall We analyze models’ performances
by reporting classification F1-scores by attack phase. Table 8
shows that LSTM’s and CNN’s weakest performance is on
asset discovery sequences, where no model achieves a high
score. This significantly lower F1-score is due, in part, to
sequences of that class having low average lengths compared
to others. Asset discovery sequences give the models less
information to learn from and inform the classification.

As recall is the percentage of instances of a class that are
correctly classified, in this multi-class setting, the per-class
recall corresponds to the classification accuracy for each
class. In Tables 9 and 10, we see that no model achieves high
recall on the asset discovery phase, with the CNN’s recall
being the highest score for that class (75%). The exfiltration
phase is evidently the easiest to classify, with perfect recall
and at least 82% precision for each model. The LSTM model
achieves the worst single score in both precision and recall.

Out-of-Distribution Evaluation While our aim is to make
the log analysis step highly precise in identifying attack
provenance, we also consider the realistic scenario where
it misidentifies possibly benign sequences of system calls as
attack phases. As sequences are composed of system calls
that are likely to be shared with attack phases, the HMM
continues to generate storylines for likely benign sequences.

Model Asset
disc.

Sys.
recon.

Exfil N/w
disc.

Persist Priv.
Escal.

SVM 81 90 100 47 100 100
CNN 50 92 100 84 100 93
LSTM 69 92 100 89 100 93

Table 10: Recall (%) of HMM-aided classification models by
attack phases. Lowest performance for each is highlighted.

Model Asset
disc.

Sys.
recon.

Exfil N/w
disc.

Persist Priv.
Escal.

Benign

SVM 35 84 44 41 100 0 38
CNN 58 92 53 88 89 72 0
LSTM 69 92 53 94 86 93 0

Table 11: F1-score (%) of each HMM-aided model by attack
phase and benign class, based on confidence threshold of 0.5.

How do trained classifiers perform on out-of-class in-
stances? 25 likely benign storylines were tested alongside 114
attack phase storylines. As models are trained on instances
belonging to six attack phases only, each prediction was ini-
tially for one of these classes. We simply rely on prediction
confidences to discriminate benign sequences. Ideally, if be-
nign instances are significantly different from attack phase
instances, their predictions should have distinctly lower confi-
dences. For these tests, any prediction made with a confidence
value less than a threshold T was changed to a prediction of
the benign class for the corresponding instance. This change
would make the prediction correct if the instance is truly
benign and incorrect for any of the original 114 instances.

Table 11 shows results of this experiment with T = 0.5.
The SVM suffers most from this thresholding approach due
to confidence values being relatively lower and more varied
than those of the other models. It does achieve the highest
F1-score on benign sequences out of the models (at T = 0.5
and at other values), but its overall performance on the attack
phases is more severely diminished than those of the CNN or
LSTM. The CNN and LSTM achieve high enough confidence
values on the majority of their predictions so that this simple
thresholding method did not change any predictions to benign.
Thus, the models achieved an F1-score of 0% on that class.

Furthermore, isolating predictions by each model on the
likely benign instances did not reveal significant differences
in mean prediction confidence from that of true attack phases.
On benign instances, mean confidence is near 51% for SVM,
88% for CNN, and 96% for LSTM. Comparatively, on the
114 attack phases, the SVM has the most varied confidence
values with a mean confidence near 54%. The CNN and
LSTM reach consistently high confidence values, with means
of 92% and 97% respectively. As such, the mean confidences
of the latter two models are similar. We did not find a value
for T that could correctly classify a high percentage of be-
nign instances without severely reducing the performance
on the attack phases. This suggests that a more sophisticated
approach is needed for out-of-class instance identification.

Confidence and Additional Phases Assessing the confi-
dences each model achieves during classification can reveal
attack phases lacking clear discriminating features. The CNN
and LSTM have high average confidence levels among cor-
rect and incorrect classifications, with almost all confidences
near 99% for the LSTM. The SVM has more dispersion in
these scores, and has better distinction in confidences among
right and wrong classifications. Interestingly, across all three
models’ incorrect classifications, if the true class was privi-
lege escalation then the predicted class was most likely to be

15229

A snippet of a raw system call log of an exfiltration attack
2018-09-28 11:51:51.356210805 accept 15858 vsftpd /home/user_1/installs/vsftpd-2.3.4/ vsftpd upstart 15858 1540
172.19.48.77 41015 <NA> <NA> <NA> 172.19.48.77:41015->172.19.48.76:21 4 172.19.48.76 ip 21 ipv4 4 root 0 245302
fd=4(<4t>172.19.48.77:41015->172.19.48.76:21) tuple=172.19.48.77:41015->172.19.48.76:21 queuepct=0 queuelen=0
queuemax=32 /bin/bash
2018-09-28 11:51:51.356529237 clone 15858 vsftpd /home/user_1/installs/vsftpd-2.3.4/ vsftpd upstart 15858 1540 <NA>
<NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> root 0 245304 res=16031(vsftpd)
exe=/usr/local/sbin/vsftpd args= tid=15858(vsftpd) pid=15858(vsftpd) ptid=1540(upstart) cwd= fdlimit=1024 pgft_maj=0
pgft_min=177 vm_size=10856 vm_rss=1372 vm_swap=0 comm=vsftpd
cgroups=cpuset=/.cpu=/.cpuacct=/.io=/.memory=/.devices=/user.slice.freezer=/.net_cls=...
flags=72(CLONE_NEWIPC|CLONE_NEWPID) uid=0 gid=0 vtid=15858(vsftpd) vpid=15858(vsftpd) /bin/bash
2018-09-28 11:51:51.356564008 close 15858 vsftpd /home/user_1/installs/vsftpd-2.3.4/ vsftpd upstart 15858 1540
172.19.48.77 41015 <NA> <NA> <NA> 172.19.48.77:41015->172.19.48.76:21 4 172.19.48.76 ip 21 ipv4 4 root 0 245306
res=0 /bin/bash
2018-09-28 11:51:51.356604502 clone 16031 vsftpd /home/user_1/installs/vsftpd-2.3.4/ vsftpd vsftpd 16031 15858 <NA>
<NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> root 0 245309 res=0 exe=/usr/local/sbin/vsftpd args=
tid=16031(vsftpd) pid=16031(vsftpd) ptid=15858(vsftpd) cwd= fdlimit=1024 pgft_maj=0 pgft_min=0 vm_size=10856
vm_rss=124 vm_swap=0 comm=vsftpd
cgroups=cpuset=/.cpu=/.cpuacct=/.io=/.memory=/.devices=/user.slice.freezer=/.net_cls=...
flags=72(CLONE_NEWIPC|CLONE_NEWPID) uid=0 gid=0 vtid=1(systemd) vpid=1(systemd) /bin/bash

The attack storyline provides an abstraction layer to
system call sequences An HMM allows us to infer a sequence of system states given the emitted system calls (observations)

Machine learning for classifying
attacks

A snippet of the GrAALF output

[…

{ "sequence_number": 37001, "user": "root", "from_id": 15858 ,
"from_name": "vsftpd", "evt_type": "exec", "to_name": "sh" ,

"to_id":16031 , "count": 2}
,

{ "sequence_number": 130618, "user": "root", "from_id": 16031 ,
"from_name": "sh", "evt_type": "exec", "to_name": "cat" ,

"to_id":16078 , "count": 2}
,

{ "sequence_number": 187465, "user": "root", "from_id": 16094 ,
"from_name": "zip", "evt_type": "read", "to_name":

"/home/user_1/sensetive_file.txt" , "to_id":7 , "count": 2}
,

{ "sequence_number": 187470, "user": "root", "from_id": 16094 ,
"from_name": "zip", "evt_type": "write", "to_name":

"172.19.48.77:48270->172.19.48.76:6200" , "to_id":6 , "count": 2}

…]

Init-server-daemon → execute-process →

server-daemon-operation → bash-executes-

process (x2) → system-information → execute-

process (x6) → file-operation (x4) → daemon-

upload-download → system-operation

Provenance graph generated by GrAALF

Vsftpd
executes

bash

Bash
executes cat

Zip reads
sensitive file

Generic process
operation

Process upload-
download

Zip writes to IP

The raw system
call log file is
loaded into
GrAALF for
processing

GrAALF
generates a
focused
sequence of
system calls
from the
provenance
graph

The sequence of system calls
is sent to the HMM to
perform causal inference

The HMM
output, the
most likely
sequence of
states,
represents
an attack
storyline

The abstracted
behavior is sent to a
machine learning
model to determine
the attack phase

States

Observations

Bash execute
process

Server-daemon
operation

Figure 1: Component steps in Cyberian’s pipeline. System call logs containing possible attacks (here, we show a data exfiltration
attack) is loaded into a graphical tool. Templated queries help identify possible attack phases and HMM based inference on these
traces generates a comprehensible ‘storyline’, which facilitates identification of the attack phase using an LSTM classifier.

asset discovery; the converse was also true. Notice that asset
discovery is the worst classified attack phase overall. From
the low F1-scores combined with the shared high confidence
between these two classes, we may reason that the storylines
for these two phases have high similarity. Misclassified in-
stances of network discovery were always predicted to be
asset discovery, although the converse was rarely true.

To test this methodology’s adaptability to honeypots in
different settings, we evaluate system call logs from the
DARPA Transparent Computing program (Computing 2020).
GrAALF discovered six attack phases from Engagements
2 and 4 of this program, containing 380 and 625 million
records respectively. Five represent activities falling within
our chosen attack phases, while one (which we label as ‘drop
file’ phase) does not. We create ground truths for the first 5
new sequences and train new instances of our classifiers with
those and the 114 original traces. Then we test the learned
models on storylines for all 6 DARPA traces. The SVM cor-
rectly classifies two traces, while the LSTM classifies one
correctly. Confidencesfor both models’ incorrect predictions
are significantly lower than their mean values. The exception
is the LSTM’s prediction on the drop file phase, which is
exfiltration and has very high confidence. The CNN correctly
classifies all but the drop file phase; notably that trace is con-
fidently predicted to be system reconnaissance, the class with
the most instances and representing the broadest activity cate-
gory. As differences between F1-scores of the models are not
significantly different in Table 7 and the CNN demonstrates
better ability to incorporate new data in this methodology,
the CNN may be the better approach for future deployment.

Concluding Remarks
Through raw system call analysis using GrAALF, storyline
generation through an HMM, and CNN-based machine learn-
ing, this pipeline of candidate methods and models, which
we name Cyberian, achieves an attack phase classification

accuracy approaching 90% (Figure 1). Thus, Cyberian is
effective in identifying attack behavior on a host based on
distinct steps of various attacks. Our results demonstrate Cy-
berian’s ability to identify actionable phases of attacks from
large system logs collected in honey pots, for further use.

One limitation of the evaluation is the relatively small num-
ber of distinct attack phases analyzed (though corresponding
logs are extensive). However, attacks tend to be infrequent
and results show that significant accuracy is attainable from
the overall methodology even when relatively few phases are
available for training. One benefit of this general methodol-
ogy is that it can follow the same procedure to identify addi-
tional phases when system call logs for these other phases
exist to use during training. The framework is not restricted
to only using the phases in the reported experiments. A future
direction of research is to experiment with more sophisti-
cated attacks to increase dataset and observation diversity; it
is likely that some of these additional logs will come from
more sophisticated methods of privilege escalation and data
exfiltration as well as new phases such as drop files.

In addition, a more sophisticated method is needed to
handle the possibility of encountering storylines that do not
belong to known attack phases (either benign or an unknown
phase); open set recognition is a promising avenue of research
for this purpose. This approach seeks to prepare models to
effectively deal with classes unseen during training while
accurately classifying seen classes (Geng, Huang, and Chen
2020). A more robust version of Cyberian with such abili-
ties could identify mistakenly generated benign storylines or
storylines representing attack phases beyond the known set.

Acknowledgments
This research was supported, in part, by a grant from the
Army Research Office under grant number W911NF-18-1-
0288. We also acknowledge discussions with Prof. Munindar
Singh’s group at NCSU, which helped shape this research.

15230

References
Baum, L. E.; Petrie, T.; Soules, G.; and Weiss, N. 1970. A
maximization technique occurring in the statistical analysis
of probabilistic functions of Markov chains. The annals of
mathematical statistics 41(1): 164–171.
Bolzoni, D.; Etalle, S.; and Hartel, P. H. 2009. Panacea:
Automating attack classification for anomaly-based network
intrusion detection systems. In International Workshop on
Recent Advances in Intrusion Detection, 1–20. Springer.
Chevalier, R. 2019. Detecting and Surviving Intrusions: Ex-
ploring New Host-Based Intrusion Detection, Recovery, and
Response Approaches. Ph.D. thesis, CentraleSupélec.
Computing, D. T. 2020. Transparent Computing Engagement
5 Data Release. https://github.com/darpa-i2o/Transparent-
Computing. [accessed 26 August 2020].
Du, M.; Li, F.; Zheng, G.; and Srikumar, V. 2017. DeepLog:
Anomaly Detection and Diagnosis from System Logs
Through Deep Learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’17, 1285–1298. New York, NY, USA: ACM.
ISBN 978-1-4503-4946-8. doi:10.1145/3133956.3134015.
URL http://doi.acm.org/10.1145/3133956.3134015.
Gao, P.; Xiao, X.; Li, D.; Li, Z.; Jee, K.; Wu, Z.; Kim, C. H.;
Kulkarni, S. R.; and Mittal, P. 2018a. {SAQL}: A Stream-
based Query System for Real-Time Abnormal System Behav-
ior Detection. In 27th USENIX Security, 639–656. USENIX.
Gao, P.; Xiao, X.; Li, Z.; Xu, F.; Kulkarni, S. R.; and Mittal,
P. 2018b. {AIQL}: Enabling Efficient Attack Investigation
from System Monitoring Data. In 2018 USENIX Annual
Technical Conference.
Garcia, K. A.; Monroy, R.; Trejo, L. A.; Mex-Perera, C.;
and Aguirre, E. 2012. Analyzing log files for postmortem
intrusion detection. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 42(6):
1690–1704.
Geng, C.; Huang, S.-j.; and Chen, S. 2020. Recent advances
in open set recognition: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence .
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Joachims, T. 1998. Text categorization with support vector
machines: Learning with many relevant features. In European
conference on machine learning, 137–142. Springer.
Laan, N. C.; Pace, D. F.; and Shatkay, H. 2006. Initial
model selection for the Baum-Welch algorithm as applied to
HMMs of DNA sequences. Queen’s University, Kingston,
ON, Canada .
Lafferty, J.; McCallum, A.; and Pereira, F. C. 2001. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the 18th Inter-
national Conference on Machine Learning 2001.
Lee, S.-M.; Yoon, S. M.; and Cho, H. 2017. Human activity
recognition from accelerometer data using Convolutional
Neural Network. In 2017 IEEE International Conference on
Big Data and Smart Computing (BigComp), 131–134. IEEE.

Lewes, T. C. 2019. SOF-ELK® Virtual Machine Distri-
bution. https://github.com/philhagen/sof-elk/blob/master/
VM README.md. [Online; accessed 25 May 2019].
Lippmann, R. P.; Fried, D. J.; Graf, I.; Haines, J. W.; Kendall,
K. R.; McClung, D.; Weber, D.; Webster, S. E.; Wyschogrod,
D.; Cunningham, R. K.; et al. 2000. Evaluating intrusion
detection systems: The 1998 DARPA off-line intrusion de-
tection evaluation. In Proceedings DARPA Information Sur-
vivability Conference and Exposition. DISCEX’00, volume 2,
12–26. IEEE.
Liu, M.; Xue, Z.; Xu, X.; Zhong, C.; and Chen, J. 2018. Host-
Based Intrusion Detection System with System Calls: Review
and Future Trends. ACM Computing Surveys (CSUR) 51(5):
98.
Milajerdi, S. M.; Gjomemo, R.; Eshete, B.; Sekar, R.; and
Venkatakrishnan, V. 2019. Holmes: real-time apt detection
through correlation of suspicious information flows. In 2019
IEEE Symposium on Security and Privacy (SP), 1137–1152.
IEEE.
Project, P. 2019. Plaso (log2timeline). https://plaso.
readthedocs.io/en/latest/. [Online; accessed 25 May 2019].
Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceedings
of the IEEE 77(2): 257–286.
Radhakrishna, V.; Kumar, P. V.; and Janaki, V. 2016. A Novel
Similar Temporal System Call Pattern Mining for Efficient
Intrusion Detection. J. UCS 22(4): 475–493.
Rapid7. 2020. metasploit. https://metasploit.com/. [Online;
accessed 20 Jan 2020].
Schreiber, J. 2017. Pomegranate: fast and flexible probabilis-
tic modeling in python. The Journal of Machine Learning
Research 18(1): 5992–5997.
Setayeshfar, O.; Adkins, C.; Jones, M.; Lee, K. H.; and Doshi,
P. 2019. GrAALF: Supporting Graphical Analysis of Audit
Logs for Forensics. arXiv preprint arXiv:1909.00902 .
Strom, B. E.; Applebaum, A.; Miller, D. P.; Nickels, K. C.;
Pennington, A. G.; and Thomas, C. B. 2018. Mitre Att&ck:
Design and Philosophy. Technical report, MITRE Corp.
Wang, W.; Guan, X.; and Zhang, X. 2004. Modeling program
behaviors by hidden Markov models for intrusion detection.
In Proceedings of 2004 International Conference on Ma-
chine Learning and Cybernetics (IEEE Cat. No.04EX826),
volume 5, 2830–2835 vol.5. doi:10.1109/ICMLC.2004.
1378514.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in neural information processing systems, 649–657.

15231

