
Ontology-Enriched Query Answering on Relational Databases

Shqiponja Ahmetaj1∗, Vasilis Efthymiou2∗, Ronald Fagin3, Phokion G. Kolaitis3, 4, Chuan Lei3,
Fatma Özcan5∗, Lucian Popa3

1 TU Wien, Austria
2 FORTH, Greece

3 IBM Research - Almaden, USA
4 UC Santa Cruz, USA

5 Google, USA
ahmetaj@dbai.tuwien.ac.at, vefthym@ics.forth.gr, fagin@us.ibm.com, kolaitis@ucsc.edu, chuan.lei@ibm.com,

fozcan@google.com, lpopa@us.ibm.com
Abstract

We develop a flexible, open-source framework for query an-
swering on relational databases by adopting methods and
techniques from the Semantic Web community and the data
exchange community, and we apply this framework to a med-
ical use case. We first deploy module-extraction techniques to
derive a concise and relevant sub-ontology from an external
reference ontology. We then use the chase procedure from the
data exchange community to materialize a universal solution
that can be subsequently used to answer queries on an en-
terprise medical database. Along the way, we identify a new
class of well-behaved acyclic EL-ontologies extended with
role hierarchies, suitably restricted functional roles, and do-
main/range restrictions, which cover our use case. We show
that such ontologies are C-stratified, which implies that the
chase procedure terminates in polynomial time. We provide
a detailed overview of our real-life application in the medical
domain and demonstrate the benefits of this approach, such as
discovering additional answers and formulating new queries.

Introduction
Ontology-Based Data Access (OBDA) (Xiao et al. 2018)
and Ontology-Mediated Query Answering (OMQA) (Bien-
venu 2016) are two closely related paradigms for answering
queries over a database in the presence of an ontology that
embodies semantic knowledge about the metadata. Much of
the literature in OBDA/OMQA is devoted to the study of
query answering under the assumptions that the ontology is
available and the mappings between the database and the
ontology have already been derived. There are real-life ap-
plications, however, where these assumptions need not hold.

A perusal of the query logs of a conversational sys-
tem (Quamar et al. 2020) that we built for the medical
database of IBM Micromedex R©, used by medical experts
(e.g., doctors, nurses, pharmacists) revealed that the answers
obtained were incomplete and, furthermore, that many user
queries could not be answered in the first place. This moti-
vated enriching the medical database with an external refer-
ence ontology, such as SNOMED CT, so that the aforemen-
tioned shortcomings could be addressed.

∗Work done while at IBM Research.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

When attempting to enrich query answers on a relational
database by using an external ontology, two main challenges
surface: (i) how to identify and reuse only the parts of the ex-
ternal ontology that are relevant to the given database - this is
particularly acute when the external ontology is very large;
and (ii) how to answer queries expressed over the vocabulary
of the external ontology using the underlying database.

To address these challenges in a broader context, beyond
our use case, we have developed a flexible open-source
framework, whose design allows using different implemen-
tations for each component, with the aim of automating as
much as possible an otherwise labor-intensive process.

For challenge (i) above, our framework uses existing tools
from different AI communities, such as data management,
Semantic Web, and description logics (DL), to automatically
generate an ontology from a relational database (Lei et al.
2018), semi-automatically match this ontology with an ex-
ternal ontology (Knoblock et al. 2012; de Uña et al. 2018)
and then extract, from the external ontology, a module that
is relevant to the database (Grau et al. 2009).

For challenge (ii) above, we follow an approach based on
data exchange, where we use the chase procedure to materi-
alize a universal solution; this makes it possible to compute
the certain answers of arbitrary conjunctive queries over the
schema of the ontology by evaluating such queries on the
materialized universal solution (Fagin et al. 2005). This ap-
proach bypasses the need to rewrite the queries (the query-
rewriting approach) and fits the requirements of our target
application, where we need to support ad-hoc queries that
must be answered in real time. The underlying relational
database is updated on only a monthly basis, hence the chase
needs to be re-run on only a monthly basis as well. Note that
query-rewriting approaches have two drawbacks that are rel-
evant in our setting: each query has to be rewritten before it
is evaluated, and the rewriting may be of exponential size in
the size of the input query (Hernich et al. 2018). This may be
inefficient when a large number of ad-hoc queries is asked.

We evaluate our framework on a use case involving an en-
terprise, medical relational database (MDB), enriched with
the SNOMED CT medical ontology. It is well known that,
for arbitrary ontologies, the chase procedure may not ter-
minate. Motivated by our use case, we identify acyclic

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15247

ELHfdr, a new class of ontologies that augment the ELH
family of DLs (covering the expressivity of SNOMED CT)
with limited functionality assertions, and with domain and
range restrictions generated from MDB. We prove that
acyclic ELHfdr ontologies give rise to a C-stratified set of
constraints (Meier, Schmidt, and Lausen 2009); therefore,
for ELHfdr ontologies, the chase always terminates.

We show that our framework makes it possible to not
only obtain additional answers to queries over our medi-
cal database, but also to formulate and answer new queries
that would not be meaningful without the external reference
ontology (SNOMED CT). Furthermore, we demonstrate ex-
perimentally that the space and time overhead required by
the chase approach is negligible compared to the benefits
of obtaining additional query answers and answering more
queries in real time.

In summary, the contributions of this work are:

• The adoption of AI and data exchange methods and tools
in a real-world medical use case, with the aim of expand-
ing the capabilities of an existing product.

• Backing our use case by concrete theoretical guarantees;
we define acyclic ELHfdr, and show it is C-stratified,
which implies that the standard chase always terminates
in polynomial time.

• A reference architecture for an end-to-end framework for
ontology-enriched query answering, generalizing the ap-
plicability of our targeted use case. Our framework is pub-
licly available on github1, and it can be deployed on top of
existing question-answering and conversational systems.

• An experimental evaluation showing the benefits of em-
ploying AI and data exchange technologies for real-world
industrial problems: we get more query answers by ex-
ploiting SNOMED CT as an external reference ontology.

Preliminaries
Data Exchange A relational schema S is a collection of
relation symbols of specified arities. A relational database
instance I over S is a collection of relations whose ari-
ties match those of the relation symbols in S. The domain
of I is the set of all values that occur in the relations of I.
All instances are assumed to be finite, i.e., they consist of fi-
nite relations. An atom (over S) is a formula P (x1, . . . , xm),
where P is a relation symbol in S and x1, . . . , xm are vari-
ables, not necessarily distinct. A fact of an instance I over
S is an expression P I(a1, . . . , am), where P is a relation
symbol in R, where P I is the relation in I interpreting P ,
and a1, . . . , am are values such that (a1, . . . , am) ∈ P I .

A data exchange setting (also known as a schema map-
ping) is a quadruple M = (S, T, Σst,Σt), where S is a
source schema, T is a target schema, Σst is a finite set of
source-to-target constraints, and Σt is a finite set of con-
straints over the target schema (Fagin et al. 2005). The con-
straints that we consider in Σst and Σt are as follows. First,
a tuple-generating dependency (tgd) is a constraint α of the

1https://github.com/IBM/ontology-enriched-query-answering

form ∀x∀y(φ(x,y)→ ∃zψ(x, z)), where φ and ψ are con-
junctions of atoms and every variable in x occurs in both
φ and ψ. We may call φ(x,y) the body of the tgd and
∃zψ(x, z) the head of the tgd. We will often omit writing
the universal quantifiers ∀x∀y. In a data exchange setting,
the set Σst is a set of source-to-target tgds (st-tgds), i.e.,
tgds α such that φ consists of atoms from the source schema
S, and ψ consists of atoms from the target schema T . The
set Σt consists of target tgds (t-tgds), i.e., tgds defined en-
tirely in terms of the target schema T , along with target
equality-generating dependencies (t-egds), i.e., constraints
of the form ∀x(φ(x) → x1 = x2), where φ consists of
atoms from T and the variables x1 and x2 occur in x.

A target instance J is a solution for a source instance I
w.r.t.M if the pair (I,J) satisfiesM, i.e., I and J together
satisfy every constraint in Σst, and J satisfies every con-
straint in Σt. Fix a data exchange setting M. The chase is
an algorithm that, given a source instance I as input, com-
putes a special solution (called a universal solution) J for I
w.r.t.M (Fagin et al. 2005). Intuitively, a universal solution
is a “most general” solution, because it can be homomor-
phically mapped into every other solution; thus, universal
solutions are the preferred solutions to materialize in data
exchange. There are several different variants of the chase;
here we will only refer to the standard chase (also known as
non-oblivious chase).

Certain Answers A conjunctive query q is a first-order
formula ∃ȳφ(x̄, ȳ), where φ(x̄, ȳ) is a conjunction of atoms,
where ȳ consists only of variables, and x̄ consists of con-
stants or variables. If q is a single atom without existentially
quantified variables, i.e., an atom of the form P (~x), then it
is called an instance query. If q is a query over the target
schema T , and I is a source instance, then the certain an-
swers cert(q, I,M) of q on I w.r.t. a data exchange setting
M = (S, T,Σst,Σt) are defined as

cert(q, I,M) =
⋂
{q(J) : J is a solution for I w.r.t.M}.

As shown in (Fagin et al. 2005), if J is a universal solution
for I w.r.t.M, then the certain answers of every conjunctive
query q over T can be obtained by evaluating q on J and
then removing all tuples containing null values (null values
can arise during the chase).

ELH terminologies Let NR and NC be countably infinite,
mutually disjoint sets of role names (binary relations) and
concept names (unary relations), respectively. Concepts are
built as follows (see (Baader et al. 2017) for more details):

C := A | > | ∃r.C | C uD,
where A ∈ NC, r ∈ NR, and C and D are concepts. Intu-
itively, concepts represent sets of objects, while roles rep-
resent binary relations between objects. In particular, ∃r.C
denotes the objects that are related through a role name r
to some object that is an instance of the concept C, and the
concept C uD denotes the objects that are instances of the
concepts C and D. In OWL, concepts are called classes and
roles are called properties.

15248

An ELH terminology T (a.k.a. restricted TBox) is a set of
concept definitions A ≡ C, (primitive) concept inclusions
A v C, and role inclusions r v s, where A ∈ NC, C is a
concept different from >, > u >, etc., and where r, s are
role names. Note that A ≡ C is an abbreviation for A v
C and C v A. As usual, we denote with v∗T the smallest
relation that satisfies: (1) r v∗T r for every role name r in
T , and (2) if r v∗T r1 and r1 v s ∈ T , then r v∗T s. This
binary relation between role names appearing in T captures
all relevant role inclusions implied by T .

In the following, we mention general (not restricted)
TBoxes, which intuitively, extend terminologies by allow-
ing for general concept inclusions of the form CvD, where
C and D are arbitrary concepts. Note that such axioms are
not allowed in terminologies, where only concept names can
occur on the left-hand side of concept definitions and prim-
itive concept inclusions. We use the term signature to refer
to a set of concept and role names, while the signature of T ,
denoted sig(T), refers to the set of concept and role names
appearing in a DL TBox T .

Framework Architecture
In this section, we present the architecture of our frame-
work, as shown in Figure 1. In this figure, rectangles in the
dashed boxes correspond to components of our framework
and edges correspond to data flow. The numbering of the
components (in circles) illustrates the order of execution.

Step 1: Ontology Creation. First, we generate a TBox T1
extracted from the relational schema S. For this component,
we follow the approach suggested in (Lei et al. 2018), which,
unlike other approaches generating so-called “flat” ontolo-
gies (Calvanese et al. 2017; Rodriguez-Muro, Kontchakov,
and Zakharyaschev 2013; Efthymiou et al. 2017), enables
the inference of concept hierarchies, domain and range re-
strictions for roles, as well as functional dependencies. In
brief, for tables in the relational schema, we first identify
primary and foreign keys. Then, we consider tables with ex-
actly two columns, both acting as foreign keys to different
tables in the schema, as intermediate tables.

From every non-intermediate table R, we generate a con-
cept containing the primary key column of R. Subsequently,
from every column xi, with 1 < i ≤ n, in a table
R(x1, . . . , xn), we generate a role rxi

(A,B), whose do-
main A is restricted to values from x1, where x1 is the (non-
composite) primary key ofR, and rangeB is either restricted
to values of a specific data type (e.g., string, integer, date), or
to values from a column x′j of another tableR′, if xi is a for-
eign key referring to R′. If there is a table R1 with a single
column, which is a foreign key referring to a table R2, we
consider the concept C1 generated from R1 as subsumed by
the concept C2 generated from R2. We consider the remain-
ing roles generated from non-intermediate tables to be func-
tional roles. Intuitively, a functional role is one that cannot
associate the same instance to two different instances. Ex-
amples of functional roles can be “hasBiologicalMother”,
associating a person to his/her biological mother (since a
person cannot have more than one biological mother), “capi-
talOf”, associating a capital city to a country, and “hasSSN”

associating a person to his/her social security number.
Example. Consider a relational schema with the ta-

bles/relations Drug(drugId, drugName, drugClass) and
DrugClass(drugClassId, drugClassName), whose primary
keys are underlined, while drugClass is a foreign key refer-
ring to the primary key drugClassId of the relation Drug-
Class. The ontology creation step will first generate two
concepts named Drug and DrugClass, since none of the
two tables is an intermediate table. From the Drug ta-
ble, we will also generate the roles (or OWL properties)
drugName and drugClass, both having as domain the in-
stances of the concept Drug. The range of drugName will
be restricted to string values. In OWL, these types of roles
correspond to the so-called datatype properties. The range
of the drugClass concept will be the instances of the concept
DrugClass. From the DrugClass table, we will generate the
role drugClassName, whose domain will be the instances of
the DrugClass concept, and whose range will be restricted
to strings. Since the given tables are not intermediate, all the
three generated roles will be functional.

Step 2: Matchings Generation. Given the TBox T1, and
the external TBox T2, we identify concepts and roles from
T1 that correspond to concepts and roles in T2, and return
those matchings as a set C = {(N1, N2)} of pairs, where
Ni ∈ sig(Ti), i ∈ {1, 2}.

As a follow-up to the example of Step 1, let T1 be the
ontology generated at that step and assume that the exter-
nal TBox T2 contains a concept called Medicament, which
matches with the concept Drug from T1. Intuitively, this
means that Medicament and Drug represent information
about the same concept. Thus, the set of matchings will con-
tain the elements (Drug,Medicament).

For this component, we can either rely on fully automated
methods (e.g., LogMap (Jiménez-Ruiz and Grau 2011)), or
use semi-automatic methods (e.g., SERENE (de Uña et al.
2018), KARMA (Knoblock et al. 2012)). Semi-automatic
methods suggest some initial matchings, and those match-
ings are then modified by domain experts. Note that this is
the only step in which human intervention may be needed.

We would like to remark on the importance of this step
for the whole framework. If the generated matchings are not
complete, this will result in generating incomplete query an-
swers. Worse yet, if the matchings are not correct, this will
also affect the correctness of the answers provided by our
framework, and this may be critical for some domains, such
as medicine. Thus, we prefer the option of semi-automatic
matching, in which human experts can manually inspect the
process and guarantee the correctness of the results.

Step 3: Module extraction. Since the external ontology
T2 may contain a very large number of axioms, and a great
part of these axioms may not be relevant to T1, we want to
retain a small subset T ′2 of T2 that captures only the mean-
ing of the terms in a signature S that we are interested in.
This is known in the literature as extracting a minimal S-
module in T2 (Grau et al. 2008). Intuitively, the minimal S-
module extracted from T2 would give us the same answers
as if querying the whole ontology T2 when posing queries
over the given signature S. It has been proven that this is
an ExpTime-complete problem, even for the less expressive

15249

Relational
Database (S, I)

Query (q)

Certain answers
(cert(q,I,M))

Chase
output

Ontology
(T1)

creation

External Ontology (T2)

Matchings
(C)

Generation

Unifying
TBox (T)

Module
(T2’)

extraction

signature

(𝕊)

t-tgds
t-egds

1 3

4

2

Schema-level

Data5

S

source instance
(I) de

pe
nd

en
cie

s

Σ(T
)

st-tgds

Chase

renaming
T1

source schema

(S)
tar

ge
t s

ch
em

a

(T)

Figure 1: Framework architecture.

fragments of DL, and undecidable for the more expressive
fragments (Grau et al. 2008). Therefore, we leverage an ef-
ficient S-module extraction algorithm that is based on the
notion of ⊥>∗-syntactic locality (Grau et al. 2009). We in-
clude in S all the names from T2 that appear in the match-
ings: S = {N2|(N1, N2) ∈ C}.

Example. Continuing our running example, assume
that the external TBox T2, in addition to the concept
Medicament, contains also the concepts Cell and Zygote,
and assume that no relation between these concepts and
the concept Medicament can be inferred from T2. Consid-
ering the set of matchings found in Step 2, namely C =
{(Drug,Medicament)}, we are interested to extract from
(the possibly large) T2 a substructure that contains all the
relevant knowledge about the concept Medicament. To this
aim, in the module extraction step, we will define the signa-
ture S to be {Medicament} and we will extract an S-module
T ′2 . Since the concepts Cell and Zygote do not contribute in
the knowledge about the concept {Medicament}, they are
not expected to appear in the extracted module T ′2 .

The benefits of module extraction became evident in our
empirical study, where using the whole T2 instead of its S-
module T ′2 resulted in a 300,000% increase (from 154 to
466,627) in the number of t-tgds, and the chase had not yet
terminated after 12 hrs, while when using T ′2 , it terminated
in less than 2 sec. The overhead of this step was 20 sec, out
of which 14 were required to load SNOMED CT in memory.

Step 4: Unifying the TBox. In this step, we perform a
renaming operation and a union operation. First, for every
matching pair (N1, N2) ∈ C, we replace every occurrence
of N1 in T1 with its matched name N2. Finally, we return
the unified TBox T = T1 ∪T ′2 . In our running example, this
unification step would result in a single ontology with the
concepts Medicament and DrugClass. The roles drugName
and drugClass, whose domain previously was bound to in-
stances of the concept Drug, will now have as their domain
instances of the concept Medicament, while their range will
remain unchanged. The role drugClassName will not be af-
fected by this unification, and it will be also part of the uni-
fied ontology.

Step 5: Query Answering via the Chase. Our data ex-
change settingM uses the relational schema S as the source
schema, a schema T resulting from the unified TBox T
(from Step 4) as the target schema, and a set of s-t tgds,
t-tgds and t-egds that we generate as we shall discuss. After
running the chase with the settingM on the source instance
I, we can then compute certain answers cert(q, I,M) for
queries q expressed over T . The details of this step are pro-
vided next.

Based on the results reported on a recent benchmarking
effort (Benedikt et al. 2017) and on the features that publicly
available chase implementations support (e.g., t-egds, query
answering), we determined that RDFox (Nenov et al. 2015)
is the most suitable implementation for our purposes.

Chase Termination for Acyclic ELHfdr

In our use case, we are interested in ELH terminologies
extended with domain and range restrictions of the form
dom(r) v A and rng(r) v A (i.e., the domain or the range
of the role r is contained in the concept name A), and func-
tionality assertions func(r). This DL fragment covers our
unified TBox (after Step 4), since SNOMED CT is acyclic
ELH (i.e., without domain and range restrictions, or func-
tional dependencies) and since the ontology generated from
our database, after Step 1, falls under acyclic EL with do-
main and range restrictions, as well functional assertions. At
the same time, we want such extended terminologies to have
the property that the chase always terminates. There is a well
known notion of an acyclic EL terminology for which the
chase always terminates (e.g., see Definition 2.9 in (Baader
et al. 2017)). The addition of domain/range restrictions and
functionality assertions, however, may destroy the termina-
tion of the chase (e.g., consider the axioms A v ∃r and
rng(r) v A). For this reason, we introduce a new notion of
acyclicity for ELH terminologies extended with domain and
range restrictions, and restricted functionality assertions.

Definition 1. An ELHfdr terminology is an ELH terminol-
ogy T extended with domain restrictions dom(r)vA, range
restrictions rng(r) v A, where A is a concept name, and
functionality assertions func(r) that satisfy the following:
• if r v s ∈ T with r 6= s, then func(s) /∈ T , and
• if r appears in C and AvC ∈ T or A ≡ C ∈ T , then

func(r) /∈ T .
The semantics of these is standard (Baader et al. 2017).

Definition 2. Let T be an ELHfdr terminology.
• We say that a concept name A directly uses a concept

name B if there is a concept inclusion AvC ∈ T or a con-
cept definition A ≡ C ∈ T , where C is a possibly complex
concept, such that at least one of the following holds:

1. B occurs in the expression defining C, or
2. there exists a role name r in C such that either rng(s)v
B ∈ T and r v∗T s, or dom(s)vB ∈ T and r v∗T s.
• We say that a concept name A uses a concept name B

if either A directly uses B, or there is a concept name B′
such that A uses B′, and B′ directly uses B.
• We say that T is acyclic if (a) there is no concept name

in T that uses itself, and (b) no concept name occurs more

15250

than once on the left-hand side of a concept inclusion A v
C ∈ T or a concept definition A ≡ C ∈ T .

It is well known and easy to see that for every EL-concept
C, there is a conjunctive query qC(x) with a free variable x,
such that C(x) ≡ qC(x). We can further distinguish two
cases for such a conjunctive query qC(x). Case 1. qC(x)
has existential quantifiers that bind at least one variable in
the conjunction, i.e., it is of the form qC(x) := ∃ȳφC(ȳ, x),
where ȳ is a non-empty tuple of variables. Case 2. qC(x)
has no existential quantifiers, i.e., it is of the form qC(x) :=
A1(x)∧ . . .∧An(x), where A1, . . . , An are concept names.

Data Exchange Setting We now describe the data ex-
change setting of our case study.

Source and target schemas. As a source schema, we use
the schema S of the input relational database (see Figure 1).
We generate the target schema T from the unified TBox T
by viewing concepts as unary relations and roles as binary
relations. At the chase implementation level, we follow the
so-called “common” data format (Benedikt et al. 2017).

st-tgds. We transform every relation R of arity n > 2 in
the source schema S to unary and binary relations by gener-
ating the following tgd:

R(x1, . . . , xn)→ R′(x1)∧R′1,2(x1, x2)∧. . .∧R′1,n(x1, xn),

where x1 is assumed to be used as the (non-composite) pri-
mary key ofR in S, andR′,R′1,j are fresh relation names. If
(R,R′′) ∈ C, we replace R′(x1) above with R′′(x1). Even
if C contains names from T1 and T2 (as defined in Step 2
of Framework Architecture), the names used in T1 are by
convention the same as those used in the schema S.

t-tgds. All axioms other than the functional roles of an
ELHfdr terminology can be expressed as tgds. For this,
we treat each axiom A ≡ C as the two inclusions A v C
and C v A; we also use the aforementioned fact that every
EL-concept is defined by a conjunctive query. The tgds aris-
ing from an ELHfdr terminology have one of the following
seven types.
A(x)→ ∃ȳφC(ȳ, x)

(arises from Av C,where C is of Case 1) (1)

A(x)→ A1(x) ∧ . . . ∧An(x)

(arises from Av C,where C is of Case 2) (2)

φC(ȳ, x)→ A(x)

(arises from C vA,where C is of Case 1) (3)

A1(x) ∧ . . . ∧An(x)→ A(x)

(arises from C vA,where C is of Case 2) (4)
r1(x, y)→ r2(x, y) (arises from r1 v r2) (5)
r(x, y)→ A(x) (arises from dom(r)vA) (6)
r(x, y)→ A(y) (arises from rng(r)vA) (7)

t-egds. Every functional role r gives rise to the egd
r(x, y) ∧ r(x, z)→ y = z.

If T is an ELHfdr terminology, then we write Σ(T) for
the set of t-tgds and t-egds associated with T as above.

Chase Termination One may think that the tgds arising
from an acyclic EL terminology form a weakly acyclic set,
guaranteeing chase termination (Fagin et al. 2005). This,
however, is not true. Indeed, let T be the EL terminology
consisting of the two axiomsAv∃r andB ≡ ∃r.A. Clearly,
T is acyclic, but one can check that the set Σ(T) of the three
tgds arising from these two axioms is not weakly acyclic.
In fact, since it contains no egds, Σ(T) is not even super-
weakly acyclic (Marnette 2009). For this reason, we need
to consider a generalization of weak acyclicity, called C-
stratification (Meier, Schmidt, and Lausen 2009).

Recall that in the case of the standard chase, a tgd α of
the form ∀x∀y(φ(x,y) → ∃zψ(x, z)) is applicable on an
instance J if there are tuples a and b of values from the
domain of J such that I |= φ(a,b), but there is no tuple c
such that J |= ψ(a, c). In the variant of the chase known as
the oblivious chase, such a tgd is applicable on J if, simply,
there are tuples of values a and b such that I |= φ(a,b).
Moreover, we say that an instanceK is obtained from J in a
single step of the oblivious chase ifK consists of the facts of
J together with facts involving fresh nulls u that interpret
the variables z so that K |= ψ(a,u). The definition of an
egd being applicable in the oblivious chase is similar.
Definition 3. Let α and β be two tgds. We say that α pre-
cedes β, denoted α ≺ β, if there are instances J andK such
that the following hold:
• K is obtained from J in a single step of the oblivious

chase using α.
• There are tuples a′, b′ of values from the domain of
K such that J |= φ′(a′,b′) → ∃z′ψ′(a′, z′), but K 6|=
φ′(a′,b′) → ∃z′ψ′(a′, z′), where we assume that the tgd
β is ∀x′∀y′(φ′(x′,y′)→ ∃z′ψ′(x′, z′)).

In a similar way, we define the notion α ≺ β, where α
and β are egds.
Definition 4. Let Σ be a set of tgds and egds.
• The chase graph of Σ is the graph with nodes the ele-

ments of Σ and edges (α, β) such that α ≺ β.
• Σ is C-stratified if for every cycle D of the chase graph

of Σ, the tgds in D form a weakly acyclic set.
In (Meier, Schmidt, and Lausen 2009), it was shown that

if a set Σ of tgds and egds is C-stratified, then, on every input
database instance J , the standard chase w.r.t. Σ terminates
in time bounded by a polynomial in the size of J . Next, we
show that every acyclic ELHfdr terminology is C-stratified.

Theorem 1. Let T be an acyclic ELHfdr terminology and
let Σ(T) be the associated set of tgds and egds. Then Σ(T)
is C-stratified.

Proof. (Hint) The proof entails a delicate analysis of the
structure of cycles in the chase graph of Σ(T). Specifically,
the following two claims are established for an arbitrary cy-
cle D in the chase graph consisting of tgds and egds.

Claim 1. The cycleD consists entirely of tgds; moreover,
none of the tgds in the cycle D is of Type 2 or of Type 4.

Claim 2. If one of the tgds in the cycle D has existen-
tially quantified variables in its head, then it is of the form
A(x)→ ∃ȳφC(ȳ, x); furthermore, the concept nameA uses
every concept name that occurs in another tgd in the cycle.

15251

Claim 2 implies that if one of the tgds in the cycle D has
existentially quantified variables in its head, then T contains
a concept name A that uses itself, which contradicts the hy-
pothesis that T is an acyclic ELHfdr terminology. Thus,
every cycle in the chase graph of Σ(T) consists of full tgds
only; this implies that the set of the tgds of every such cycle
forms a weakly acyclic set; hence Σ(T) is C-stratified.

Evaluation
In this section, we present the experimental evaluation of
our framework for our use case, involving an enterprise,
medical relational database, which we will call MDB, and
SNOMED CT as the external ontology. The evaluation is
carried out at two levels and demonstrates the benefits of
using our framework: first, we document the discovery of
additional answers for queries that were originally asked di-
rectly on MDB; second, we document the ability to formu-
late new queries, when using our framework, that were not
meaningful using only the schema of MDB.

Setup. The experiments reported here were executed on
a laptop running macOS R© 10.15.2 with a Quad-Core Intel R©

i7@2.9GHz processor and 16 GB RAM. The times reported
are the average from 10 executions.

Data. MDB is an enterprise relational database, consist-
ing of 62 relations of arities varying from 2 to 11, and of
158 foreign key constraints with a total of 512,769 tuples,
occupying 62.3 MB disk space. MDB data, related to drug
information, such as dosage and drug interactions, support
the conversation system (Quamar et al. 2020) that motivated
this work. The relational schema and instance of MDB are
updated on a yearly and monthly basis, respectively.

Ontologies. The ontology T1, which is generated auto-
matically from MDB using the methodology of (Lei et al.
2018), consists of 49 concepts and 170 roles. All 170
roles are associated with both domain and range restric-
tions, while 156 of them are functional. The ontology T2
is SNOMED CT, and consists of 356,065 concepts and 119
roles. None of the roles in SNOMED CT is functional, or as-
sociated with domain or range restrictions. We identified 12
matchings between T1 and T2, i.e., |C| = 12. As a side note,
we observe that there are concepts in SNOMED CT which
appeared as entries of tuples in our MDB tables. This was
another challenge for matching, a challenge that is not usu-
ally addressed in the literature, but it is rather frequent in real
applications. The module T ′2 for the signature S, as defined
in Framework Architecture, in T2 consists of 35 concepts
and 7 roles. Finally, the unified TBox T consists of 72 con-
cepts and 177 roles. Out of these roles, 156 are functional,
while 170 are associated with domain and range restrictions.
The small number of concepts in T , as compared to those in
T2, is the result of module extraction; it makes the chase
process much more efficient in terms of time and space re-
quirements, as described shortly.

Given that SNOMED CT is a standard ontology, using
standardized terminology, it is intuitive for medical experts
(e.g., pharmacists, doctors, and nurses), i.e., our target group
of users, to understand and use the unified ontology without
much effort.

Figure 2: Number of query answers (in log scale).

Chase. Our data exchange setting has 62 st-tgds, 154 t-
tgds, and 156 t-egds. The chase terminated successfully in
1,676 ms, which breaks into 870 ms for applying the st-tgds,
and 806 ms for applying the t-tgds and t-egds. The result oc-
cupied 77.5 MB of space, which is a 24% increase compared
to the 62.3 MB required to store the source instance.

Results. Figure 2 presents the evaluation results for a sub-
set of real queries posed by medical experts on MDB, from
the query logs of a conversation system (Quamar et al. 2020)
from January to June 2019. The figure contains the num-
ber of answers returned by running only the st-tgds (Origi-
nal Answers), i.e., renaming MDB names to their matched
SNOMED names, and the number of answers returned by
using our framework (Ontology-Enriched Answers). The
evaluated queries, expressed in the vocabulary of the target
schema are (written in Prolog style; quantifiers omitted):
q1(x) := ClinicalFinding(x) .
q2(x) := DrugAdministration(x) .
q3(x, y, z) := ClinicalFinding(x), DrugInteraction(x),

dIForDrug(x,w), drugName(w, y), dISeverity(x, z) .
q4(x, y) := ClinicalFinding(x), DrugInteraction(x),

dISeverity(x, y), dIForDrug(x,w),
drugName(w, “Aspirin”) .

q5(y, s) := ClinicalFinding(x), dIForDrug(x,w),
drugName(w, “Aspirin”), dISeverity(x, “Major”),
dIForDrug(x, z), drugName(z, y), dISummary(x, s).

q6(x) := Disease(x), roleGroup(x, y),
associatedWith(y, z), DrugOrMedicament(z).

q7(x) := ClinicalHistoryAndObservationFindings(x) .
q8(x) := ManagementOfDrugAdministration(x) .
q9(x) := ManagementProcedure(x) .
q10(x) := PreventionStatus(x) .
q11(x) := Substance(x) .
q12(x, z) := MedicinalProduct(x), playsRole(x, y),

TherapeuticRole(y), drugClassName(x, z).
q13(x) := PreventionStatus(x), monitoringOfDrug(x, y),

drugName(y, Ibuprofen”).
q14(x) := drugName(z, x), Complication(y),

advEffectDescription(y, “Seizure”),
advEffectToDrug(y, z).

q15(x) := Procedure(x), drugRouteType(y, “Oral”),
procedRoute(x, y), procedToDrug(x, z),
drugName(z, “Aspirin”).

15252

Queries q1 and q2 are instance queries that MDB could
answer, but incompletely. Query q3 is a CQ that MDB could
answer, but provided 0 answers, because MDB does not
know that Drug Interaction is a Clinical Finding. Queries q4
and q5 are similar to q3, but they include constant values, i.e.,
they are specifically asking for a certain drug (“Aspirin”), as
well as drugs whose interactions with Aspirin have a cer-
tain severity (“Major”). Query q6 is a CQ that MDB could
not answer, as it consists of concept and role names only
met in SNOMED. Queries q7-q11 (resp. q12-q15) are in-
stance queries (resp. CQs) that MDB could not answer, as
they include some concepts and roles from SNOMED, not
included in MDB. Query-answering times ranged from 1ms
(for queries q13-q15) to 576ms (for q3), averaging 64ms.

We identify two general types of queries, for which our
framework is beneficial: (i) Queries whose conjuncts are
all known in the relational database, but where we learned
something new about those conjuncts from the external on-
tology (e.g., their involvement in a new concept/role hier-
archy). Examples of such queries are q1-q5. (ii) Queries
whose conjuncts include concept/role names unknown to the
relational database, but known to the external ontology; this
is the reason that, for such queries, there are no answers.
Examples of such queries are q6-q15.

In summary, we showed that our framework offers
ontology-enriched answers to real queries from the query
log of a conversational system in production. Note that this
system was built with the queries that a relational database
can answer. The log revealed that medical experts were also
asking natural language questions using vocabulary not cap-
tured by the database, but was available from SNOMED CT.
By enriching the database, we were able to answer those
queries, as well as provide additional answers to existing
ones. Since the answers that our framework provides are cer-
tain answers, this guarantees their correctness, provided that
the produced matchings are also correct. This significantly
expands the scope and increases the usability of the conver-
sational system.

Related Work
The OBDA paradigm has received increasing attention in the
last decade, giving rise to a large body of applications (Xiao
et al. 2018; Giacomo et al. 2018). Typical OBDA systems,
e.g, Mastro (Calvanese et al. 2011), Ontop (Calvanese et al.
2017), Optique (Kharlamov et al. 2015), cannot be directly
used for our case study, since they target OWL2 QL ontolo-
gies, which are based on DL-Lite, a DL that is orthogonal to
ELH. A major difference with (Hovland et al. 2017), which
manually defines an ontology that captures the vocabulary
used in a predetermined set of target queries, is that we uti-
lize a standardized external reference ontology, in which we
extract a module related to the underlying data. Additionally,
we don’t assume our relational database to be denormalized
and without integrity constraints.

In recent years, module extraction and modularization
for ontologies have received significant attention in the
literature, where different notions of modules and vari-
ous algorithms to extract these modules have been pro-
posed (Vescovo et al. 2020; Matentzoglu, Parsia, and Sattler

2018; Chen et al. 2019; Konev et al. 2013). In this work, we
follow the syntactic locality-based approach of (Grau et al.
2009), but other notions, such as model-theoretic insepara-
bility of (Konev et al. 2013), may also be considered.

Several different notions of acyclicity as sufficient condi-
tions for chase termination have been studied in the litera-
ture, e.g., weak acyclicity (Fagin et al. 2005), super-weak
acyclicity (Marnette 2009), stratification (Deutsch, Nash,
and Remmel 2008), and C-stratification (Meier, Schmidt,
and Lausen 2009). Here, in Theorem 1, we showed that ev-
ery acyclic ELHfdr terminology gives rise to a C-stratified
set of tgds and egds, while those sets of tgds and egds need
not be super-weakly acyclic. (Grau et al. 2013) introduced
the notions of model-faithful acyclicity (MFA) and model-
summarising acyclicity (MSA), showing that these notions
guarantee the termination of the Skolem chase, and also that
they properly contain the notion of super-weak acyclicity.
However, (Grau et al. 2013) did not offer a comparison be-
tween MFA/MSA and C-stratification. Note that termination
of the Skolem chase implies the termination of the standard
chase, but not the other way around. It remains to be inves-
tigated whether the chase termination for acyclic ELHfdr

can also be derived from the results about MFA or MSA.
(Konev et al. 2012) consider acyclic ELHdr terminolo-

gies following the classical acyclicity definition for termi-
nologies (Baader et al. 2017). The main difference with the
notion proposed here is that they do not pose any constraints
on domain/range restrictions, which we have noted can de-
stroy chase termination. Finally, (Mei et al. 2009) study
query answering over acyclic ontologies of the EL family,
but without range restrictions and functionality assertions.
Unlike our chase-based approach to query answering, they
only partially materialize the data and perform query rewrit-
ing to filter unsound answers. This is known as the combined
approach (Kontchakov et al. 2011) and is mainly proposed
for ontologies that may admit an infinite chase.

Concluding Remarks
We have presented an open-source framework that com-
bines methods from different AI communities for ontology-
enriched query answering. Along the way, we have iden-
tified a new class of acyclic ELH ontologies with do-
main/range restrictions and restricted functional roles,
which we have proven to be C-stratified, implying chase
termination in polynomial time. Our experimental evalua-
tion demonstrates that our framework can discover addi-
tional answers and support new queries over a given medical
database, while increasing the database size by only 24% (15
MB). Presently, we are exploring applications of our frame-
work to domains other than medical, such as finance.

References
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Benedikt, M.; Konstantinidis, G.; Mecca, G.; Motik, B.; Pa-
potti, P.; Santoro, D.; and Tsamoura, E. 2017. Benchmarking
the Chase. In PODS, 37–52.

15253

Bienvenu, M. 2016. Ontology-Mediated Query Answering:
Harnessing Knowledge to Get More from Data. In IJCAI,
4058–4061.

Calvanese, D.; Cogrel, B.; Komla-Ebri, S.; Kontchakov, R.;
Lanti, D.; Rezk, M.; Rodriguez-Muro, M.; and Xiao, G.
2017. Ontop: Answering SPARQL queries over relational
databases. Semantic Web 8(3): 471–487.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
Poggi, A.; Rodriguez-Muro, M.; Rosati, R.; Ruzzi, M.; and
Savo, D. F. 2011. The MASTRO system for ontology-based
data access. Semantic Web 2(1): 43–53.

Chen, J.; Alghamdi, G.; Schmidt, R. A.; Walther, D.; and
Gao, Y. 2019. Ontology Extraction for Large Ontologies via
Modularity and Forgetting. In K-CAP, 45–52.

de Uña, D.; Rümmele, N.; Gange, G.; Schachte, P.; and
Stuckey, P. J. 2018. Machine Learning and Constraint Pro-
gramming for Relational-To-Ontology Schema Mapping. In
IJCAI, 1277–1283.

Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisited. In PODS, 149–158.

Efthymiou, V.; Hassanzadeh, O.; Rodriguez-Muro, M.; and
Christophides, V. 2017. Matching Web Tables with Knowl-
edge Base Entities: From Entity Lookups to Entity Embed-
dings. In ISWC, 260–277.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor.
Comput. Sci. 336(1): 89–124.

Giacomo, G. D.; Lembo, D.; Lenzerini, M.; Poggi, A.; and
Rosati, R. 2018. Using Ontologies for Semantic Data In-
tegration. In A Comprehensive Guide Through the Italian
Database Research Over the Last 25 Years, volume 31 of
Studies in Big Data, 187–202. Springer International Pub-
lishing.

Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U. 2008.
Modular Reuse of Ontologies: Theory and Practice. J. Artif.
Intell. Res. 31: 273–318.

Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U. 2009.
Extracting Modules from Ontologies: A Logic-Based Ap-
proach. In Modular Ontologies: Concepts, Theories and
Techniques for Knowledge Modularization, volume 5445 of
Lecture Notes in Computer Science, 159–186. Springer.

Grau, B. C.; Horrocks, I.; Krötzsch, M.; Kupke, C.; Magka,
D.; Motik, B.; and Wang, Z. 2013. Acyclicity Notions for
Existential Rules and Their Application to Query Answering
in Ontologies. J. Artif. Intell. Res. 47: 741–808.

Hernich, A.; Lutz, C.; Papacchini, F.; and Wolter, F.
2018. Horn-Rewritability vs PTime Query Evaluation in
Ontology-Mediated Querying. In IJCAI, 1861–1867.

Hovland, D.; Kontchakov, R.; Skjæveland, M. G.; Waaler,
A.; and Zakharyaschev, M. 2017. Ontology-Based Data Ac-
cess to Slegge. In ISWC, 120–129.

Jiménez-Ruiz, E.; and Grau, B. C. 2011. LogMap: Logic-
Based and Scalable Ontology Matching. In ISWC, 273–288.

Kharlamov, E.; Jiménez-Ruiz, E.; Pinkel, C.; Rezk, M.;
Skjæveland, M. G.; Soylu, A.; Xiao, G.; Zheleznyakov, D.;
Giese, M.; Horrocks, I.; and Waaler, A. 2015. Optique:
Ontology-Based Data Access Platform. In ISWC Posters
& Demonstrations Track, volume 1486 of CEUR Workshop
Proceedings. CEUR-WS.org.
Knoblock, C. A.; Szekely, P. A.; Ambite, J. L.; Goel, A.;
Gupta, S.; Lerman, K.; Muslea, M.; Taheriyan, M.; and
Mallick, P. 2012. Semi-automatically Mapping Structured
Sources into the Semantic Web. In ESWC, 375–390.
Konev, B.; Ludwig, M.; Walther, D.; and Wolter, F. 2012.
The Logical Difference for the Lightweight Description
Logic EL. J. Artif. Intell. Res. 44: 633–708.
Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2013.
Model-theoretic inseparability and modularity of descrip-
tion logic ontologies. Artif. Intell. 203: 66–103.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and
Zakharyaschev, M. 2011. The Combined Approach to
Ontology-Based Data Access. In IJCAI, 2656–2661.
Lei, C.; Özcan, F.; Quamar, A.; Mittal, A. R.; Sen, J.; Saha,
D.; and Sankaranarayanan, K. 2018. Ontology-Based Natu-
ral Language Query Interfaces for Data Exploration. IEEE
Data Eng. Bull. 41(3): 52–63.
Marnette, B. 2009. Generalized schema-mappings: from ter-
mination to tractability. In PODS, 13–22.
Matentzoglu, N.; Parsia, B.; and Sattler, U. 2018. OWL Rea-
soning: Subsumption Test Hardness and Modularity. J. Au-
tom. Reason. 60(4): 385–419.
Mei, J.; Liu, S.; Xie, G. T.; Kalyanpur, A.; Fokoue, A.; Ni,
Y.; Li, H.; and Pan, Y. 2009. A Practical Approach for Scal-
able Conjunctive Query Answering on Acyclic EL+ Knowl-
edge Base. In ISWC, 408–423.
Meier, M.; Schmidt, M.; and Lausen, G. 2009. On Chase
Termination Beyond Stratification. PVLDB 2(1): 970–981.
Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. RDFox: A Highly-Scalable RDF Store.
In ISWC, 3–20.
Quamar, A.; Lei, C.; Miller, D.; Özcan, F.; Kreulen, J.;
Moore1, R. J.; and Efthymiou, V. 2020. An Ontology-Based
Conversation System for Knowledge Bases. In SIGMOD,
361–376.
Rodriguez-Muro, M.; Kontchakov, R.; and Zakharyaschev,
M. 2013. Ontology-Based Data Access: Ontop of
Databases. In ISWC, 558–573.
Vescovo, C. D.; Horridge, M.; Parsia, B.; Sattler, U.; Schnei-
der, T.; and Zhao, H. 2020. Modular Structures and Atomic
Decomposition in Ontologies. J. Artif. Intell. Res. 69: 963–
1021.
Xiao, G.; Calvanese, D.; Kontchakov, R.; Lembo, D.; Poggi,
A.; Rosati, R.; and Zakharyaschev, M. 2018. Ontology-
Based Data Access: A Survey. In IJCAI, 5511–5519.

15254

