
JEL: Applying End-to-End Neural Entity Linking in JPMorgan Chase

Wanying Ding, Vinay K. Chaudhri, Naren Chittar, Krishna Konakanchi
JPMorgan Chase & Co.

{wanying.ding, vinay.chaudhri, naren.chittar}@jpmchase.com, krishna.k.konakanchi@chase.com

Abstract

Knowledge Graphs have emerged as a compelling abstrac-
tion for capturing key relationship among the entities of in-
terest to enterprises and for integrating data from heteroge-
neous sources. JPMorgan Chase (JPMC) is leading this trend
by leveraging knowledge graphs across the organization for
multiple mission critical applications such as risk assessment,
fraud detection, investment advice, etc. A core problem in
leveraging a knowledge graph is to link mentions (e.g., com-
pany names) that are encountered in textual sources to en-
tities in the knowledge graph. Although several techniques
exist for entity linking, they are tuned for entities that ex-
ist in Wikipedia, and fail to generalize for the entities that
are of interest to an enterprise. In this paper, we propose a
novel end-to-end neural entity linking model (JEL) that uses
minimal context information and a margin loss to generate
entity embeddings, and a Wide & Deep Learning model to
match character and semantic information respectively. We
show that JEL achieves the state-of-the-art performance to
link mentions of company names in financial news with en-
tities in our knowledge graph. We report on our efforts to
deploy this model in the company-wide system to generate
alerts in response to financial news. The methodology used
for JEL is directly applicable and usable by other enterprises
who need entity linking solutions for data that are unique to
their respective situations.

Introduction
Knowledge Graphs are being used for a wide range of
applications from space, journalism, biomedicine to enter-
tainment, network security, and pharmaceuticals. Within JP
Morgan Chase (JPMC), we are leveraging knowledge graphs
for financial applications such as risk management, sup-
ply chain analysis, strategy implementation, fraud detec-
tion, investment advice, etc. While leveraging a knowledge
graph, Entity Linking (EL) is a central task for semantic
text understanding and information extraction. As defined in
many studies (Zhang et al. 2010; Eshel et al. 2017; Kolitsas,
Ganea, and Hofmann 2018), in an EL task we link a poten-
tially ambiguous Mention (such as a company name) with
its corresponding Entity in a knowledge graph. EL can fa-
cilitate several knowledge graph applications, for example,
the mentions of company names in the news are inherently

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ambiguous, and by relating such mentions with an internal
knowledge graph, we can generate valuable alerts for finan-
cial analysts. In Figure 1, we show a concrete example in
which the name “Lumier” has been mentioned in two differ-
ent news items. “Lumier”s are two different companies in
the real world, and their positive financial activities should
be brought to the attention of different stakeholders. With a
successful EL engine, these two mentions of “Lumier”s can
be distinguished and linked to their corresponding entities in
a knowledge graph.

Prior work on EL has been driven by a number of stan-
dard datasets, such as CoNLYAGO (Suchanek, Kasneci, and
Weikum 2007), TAC KBP1, DBpedia2, and ACE3. These
datasets are based on Wikipedia, and are therefore, naturally
coherent, well-structured and rich in context (Eshel et al.
2017). We face the following problems when we use these
methods for entity linking for our internal knowledge graph:

1) Wikipedia does not cover all the entities of financial inter-
est. For example, as of this writing, the startup “Lumier”
mentioned in Figure 1 is not present in Wikipedia, but it
is of high financial interest as it has raised critical invest-
ment from famous investors.

2) Lack of context information. Many pre-trained models
achieve great performance by leveraging rich context data
from Wikipedia (Ganea and Hofmann 2017). For JPMC
internal data, we do not have information comparable to
Wikipedia to support re-training or fine-tuning of existing
models.

To address the problems identified above, we built a novel
entity linking system, JEL, to link mentions of company
names in text to entities in our own knowledge graph. Our
model makes the following advancements on the current
state-of-the-art:

1) We do not rely on Wikipedia to generate entity embed-
dings. With minimum context information, we compute
entity embeddings by training a Margin Loss function.

2) We deploy the Wide & Deep Learning (Cheng et al. 2016)
to match character and semantic information respectively.
1https://www.ldc.upenn.edu/collaborations/current-

projects/tac-kbp
2https://wiki.dbpedia.org/develop/datasets
3https://catalog.ldc.upenn.edu/LDC2006T06

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15301

Figure 1: Example for Entity Linking

Unlike other deep learning models (Martins, Marinho,
and Martins 2019; Kolitsas, Ganea, and Hofmann 2018;
Ganea and Hofmann 2017), JEL applies a simple linear
layer to learn character patterns, making the model more
efficient both in the training phase and inference phase.

Problem Definition and Related Work
Problem Definition
We assume a knowledge graph (KG) has a set of entities
E. We further assume that W is the vocabulary of words
in the input documents. An input document D is given as
a sequence of words: D = {w1, w2, ..., wd} where wk ∈
W, 1 ≤ k ≤ d. The output of an EL model is a list of T
mention-entity pairs {(mi, ei)}i∈{1,T}, where each mention
is a word subsequence of D, mi = wl, ..., wr, 1 ≤ l ≤
r ≤ d, and each entity ei ∈ E. The entity linking process
involves the following two steps (Ceccarelli et al. 2013).

1) Recognition. Recognize a list of mentions mi as a set of
all contiguous sequential words occurring inD that might
mention some entity ei ∈ E. We adopted spaCy4 for men-
tion recognition.

2) Linking. Given a mention mi, and the set of candidate
entities, C(mi) such that |C(mi)| > 1, from the KG,
choose the correct entity, ei ∈ C(mi), to which the men-
tion should be linked. We focus on solving the linking
problem in this paper.

Popular Methods
Entity Linking is a classical NLP problem for which the fol-
lowing techniques have been used: String Matching, Con-
text Similarity, Machine Learning Classification, Learning
to Rank, and Deep Learning. In the following several para-
graphs, we will briefly discuss each of them.

4https://spacy.io/

– String Matching Methods. String matching measures
the similarity between the mention string and entity name
string. We experimented with different string matching
methods for name matching, including Jaccard, Leven-
shtein, Ratcliff-Obershelp, Jaro Winkler, and N-Gram Co-
sine Simiarity, and found that n-gram cosine similarity
achieves the best performance on our internal data. How-
ever, pure string-matching methods breakdown when two
different entities share similar or the same name (as shown
in Figure 1) which motivates the need for better matching
techniques.

– Context Similarity Methods. Context Similarity meth-
ods compare similarities of respective context words for
mentions and entities. The context words for a mention
are the words surrounding it in the document. The context
words for an entity are the words describing it in the KG.
Similarity functions, such as Cosine Similarity or Jaccard
Similarity, are widely used to compare the two sets of con-
text words (Cucerzan 2007; Mihalcea and Csomai 2007),
and then to decide whether a mention and an entity should
be linked.

– Machine Learning Classification. Many studies adopt
machine learning techniques for the EL task. Binary
classifiers, such as Naive Bayes (Varma et al. 2009),
C4.5 (Milne and Witten 2008), Binary Logistic classifier
(Han, Sun, and Zhao 2011), and Support Vector Machines
(SVM) (Zhang et al. 2010), can be trained on mention-
entity pairs to decide whether they should be linked.

– Learn to Rank Methods. As a classification method will
generate more than one mention-entity pairs, many sys-
tems use a ranking model (Zheng et al. 2010) to select the
most likely match. Learning to Rank (LTR) is a class of
techniques that supplies supervised machine learning to
solve ranking problems.

– Deep Learning Methods. Deep learning has achieved
success on numerous tasks including EL (Sun et al. 2015;

15302

Huang, Heck, and Ji 2015; Francis-Landau, Durrett, and
Klein 2016). One specific model (Kolitsas, Ganea, and
Hofmann 2018) uses two levels of Bi-LSTM to embed
characters into words, and words into mentions, and cal-
culates the similarity between a mention vector and a pre-
trained entity vector (Ganea and Hofmann 2017) to decide
whether they match.

Proposed Framework
Entity Embedding
Most public entity embedding models (He et al. 2013; Ya-
mada et al. 2016; Ganea and Hofmann 2017) are designed
for Wikipedia pages and require rich entity description in-
formation. In our case, each entity has a short description
that is insufficient to support a solid statistical estimation of
entity embeddings (Mikolov, Yih, and Zweig 2013). To ad-
dress this limitation, we use a Triplet Loss model to generate
our own entity embeddings from pre-trained word embed-
ding models with limited context information support.

Entity Embedding Model. To prepare training data for
this model, we select 10 words that can be used as posi-
tive examples and 10 words that can be used as negative ex-
ample for each entity. To select the positive examples, we
score each entity’s description words with tf-idf, and select
the words with 10 highest scores. To select the negative ex-
amples, we randomly select from words that do not appear in
this entity’s description. Thus, for each entity, we can con-
struct 10 < entity, positive-word, negative-word > triplets
to feed into triplet loss function formulated as Equation 1
below.

Loss =
N∑
i=1

[||fai − f
p
i ||

2
2 − ||fai − fni ||22 + α]+ (1)

where fai is the vector of an anchor that we learn, fpi is the
vector from a positive sample, and fni is the vector from
a negative sample, α is the margin hyper-parameter to be
manually defined. We train the entity embedding vectors
(fa). We use off-the-shelf word embedding vectors(fp and
fn) from the fastText language model. In our experiments,
α = 2.0 led to the best performance.

Entity Embedding Validation. To validate the entity em-
beddings, we choose five seed companies from differ-
ent industries — “Google DeepMind”, “Hulu”, “Magellan
Health”, “PayPal Holdings”, “Skybus Airlines”. We next se-
lect their ten nearest neighbors (as shown in Figure 2). We
calculate a t-Distributed Stochastic Neighbor Embedding (t-
SNE) to project the embeddings into a 2-dimension space.
As clearly shown in Figure 2, five seed companies from dif-
ferent industries are clearly separated in space. For “Google
DeepMind”, we can find that all its neighbors 5 are, as ex-
pected, Artificial Intelligence and Machine Learning compa-
nies. This visualization gives us a sanity check for our entity
embeddings.

5SambaNova Systems, Lumier, ParallelM, CTRL-labs, Coher-
ent AI, etc.

Entity Linking
Two factors affect an EL model’s performance: Characters
and Semantics.

– Characters: “Lumier” will be easily distinguished from
“ ParallelM” because they have completely different char-
acter patterns. These patterns can be easily captured by a
wide and shallow linear model.

– Semantics. In Figure 1, “Lumier(Software)” can be dis-
tinguished from “Lumier (LED)” because they have dif-
ferent semantic meanings behind the same name. These
semantic differences can be captured by a deep learning
model.

To combine the two important factors listed above, we de-
velop a Wide&Deep Learning model (Cheng et al. 2016) for
our EL task (shown in Figure 4).

Wide Character Learning. Unlike many other ap-
proaches (Kolitsas, Ganea, and Hofmann 2018; Lample
et al. 2016) that apply character embeddings to incorporate
lexical information, we apply a wide but shallow linear layer
for the following two reasons. First, embedding aims to cap-
ture an item’s semantic meanings, but characters naturally
have no such semantics. “A” in “Amazon” does not have
any relationship with “A” in “Apple”. Second, as embed-
ding layer involves more parameters to optimize, it is much
slower in training and inference than a simple linear layer.

Feature Engineering. Many mentions of an entity exhibit
a complex morphological structure that is hard to account
for by simple word-to-word or character-to-character match-
ing. Subwords can improve matching accuracy dramatically.
Given a string, we undertake the following processing to
maximize morphological information we can get from sub-
words.

1) Clean a string, convert it to lower case, remove punctua-
tion, standardize suffix, etc. For example, “PayPal Hold-
ings, Inc. ” will change to “paypalhlds”.

2) Pad the start and end of the string;“paypalhlds” will be
converted to “*paypalhlds*”.

3) Apply multiple levels of n-gram (n ∈ [2, 5]) segmenta-
tion;“*paylpalhlds* ” will be { *p, ay,..., lhlds, hlds* }.

4) Append original words, *paypal* and *hlds*, to the token
list.

Wide Character Learning. We applied a Linear Siamese
Network (Bromley et al. 1994) for wide character learn-
ing. We implemented two identical linear layers with shared
weights (as shown in the left part of Figure 4). With this ar-
chitecture, similar inputs, Tm and Te, will generate similar
outputs, Ym and Ye. We applied the Euclidean distance to
estimate output’s similarity.

Dsyx = d(Ym,Ye) =

√√√√ n∑
i=1

(Ymi
− Yei)2 (2)

Deep Semantic Embedding. We embed the mentions into
vectors so that we can mathematically measure similarities

15303

Figure 2: Visualization and Validation of Entity Embeddings with t-SNE

Figure 3: Model for Entity Embedding

between them and entity embeddings. We use LSTM to em-
bed mentions from their context. Similar idea is adopted
elsewhere (Kolitsas, Ganea, and Hofmann 2018), but instead
of using a Bi-LSTM over the whole context, we apply two
shorter LSTMs to embed mention from two directions (as
shown in Figure 4), making the embedding more targeted
with less parameters involved.

Given a mention mt, we treat its left n words
{wt−n, ..., wt−1, wt} (mention words included) and its left
context, and right n words{wt, wt+1, ..., wt+n} as its right
context (mention words included)6

hlt =
−−−−→
LSTM(wlt−1, wt)

hrt =
←−−−−
LSTM(wrt+1, wt)

(3)

In addition to LSTM, we apply an attention layer to distin-
guish the influence of words. We multiply last layer’s out-
put from LSTM {xi, .., xj} with attention weights, and get

6We adopt the same pre-trained word embedding as for entity
embedding.

a context representation v.
αk =< wα, xk >

ak =
exp(αk)∑j
s=i exp(αs)

g =

j∑
k=i

akxk

(4)

Thus, we form a mention’s vector by concatenating its left
and right context representations, gl and gr:

gm = [gl; gr]

Vm = FC(gm)
(5)

where FC is a fully connected feed-forward neural network.
When we get the mention embedding Vm, given a pretrained
entity embedding vector Ve, we can calculate similarity be-
tween these two vectors based on Euclidean distance.

Dsmc = d(Vm,Ve) =

√√√√ n∑
i=1

(Vmi − Vei)2 (6)

Contrastive Loss Function We combine both Dsyx and
Dsmc as our target to train the model. The final distance is
defined as:

DW = λsyxDsyx + λsmcDsmc (7)
Then, we apply a contrastive loss function to formulate our
object loss function.

L = (Y)
1

2
(DW)2 + (1− Y)

1

2
{max(0,m−DW)}2 (8)

where Y is the ground truth value, where a value of 1 indi-
cates that mention m and entity e is matched, 0 otherwise.

15304

Figure 4: JEL Model Framework

Experiment and Analysis
Data Preparation
We first applied spaCy over financial news to detect all the
named entity mentions. SpaCy features neural models for
named entity recognition (NER). By considering text cap-
italization and context information, spaCy claims an accu-
racy above 85% for NER. Satisfied with spaCy’s perfor-
mance, we used it on financial news to recognize all the crit-
ical mentions that are tagged with “ORG”. The data prepa-
ration process was as follows:

1) We extracted mentions from the financial news with
spaCy.

2) We applied bi-gram cosine similarity between the ex-
tracted mentions and company names in our internal
knowledge grpah.

3) If the similarity score between a mention string and an
entity name is smaller than 0.5, we treated that as a strong
signal that the two are not linked, and marked them as 0.

4) If the similarity score between a mention string and an en-
tity name is equal to 1.0, we manually checked the list to
avoid instances that two different entities share the same
name (infrequent), and marked the pair as 1.

5) If a mention and an entity name have cosine similarity
larger than 0.75, but smaller than 1.0, we manually la-
beled:

(a) Some cases are easy to tell, such as: “Luminet” vs “Lu-
minex”, we labeled those instances as 0 directly.

(b) Some cases can be decided according to their descrip-
tion/context. We printed mention’s context information
and entity’s description respectively, and made the de-
cision based on those texts, such as “Apple” vs “Apple
Corps.”.

(c) Some other cases need help from publicly informa-
tion found through internet search to decide, such as

”Apollo Management” vs ”Apollo Global Manage-
ment”.

6) If a mention and an entity name have cosine similarity
between 0.5 and 0.75, we discarded it. These cases are
too many for manual labeling, and too complicated for
machine labeling.

7) Negative examples from step 3, make the dataset very
imbalanced containing many more negative pairs. We
counted the number of examples obtained in steps 4. and
5., and randomly sampled a comparable number from the
examples gathered in step 3.
In total, we have labeled 586, 975 ground truth mention-

entity pairs, with 293,949 positive mention-entity pairs, and
293, 026 negative pairs. We split 80% of the data as training
data, 10% as validation data, and 10% as testing data.

Baselines
1) String Matching We chose Bi-Gram and Tri-Gram Co-

sine Similarity as two of baselines. Before similarity cal-
culation, all tokens were weighted with tf-idf scores. We
set 0.8 as the threshold.

2) Context Similarity We used Jaccard and Cosine simi-
larity to measure the similarities between mention con-
text and entity descriptions. A potential matched mention-
entity pair should share at least one context word.

3) Classification We chose Logistic Regression (LR) and
SVM for experiments. We adopted the feature engineer-
ing method defined in (Zheng et al. 2010), but only kept
the following features that we can generate from our data:
– StrSimSurface: edit-distance among mention strings

and entity names.
– ExactEqualSurface: number of overlapped lemmatized

words in mention strings and entity names.
– TFSimContext: TF-IDF similarity between mention’s

context and entity’s description

15305

True Positivve True Negative False Positive False Negative Precision Recall F1-Sccore Accuracy
JEL 0.5 0.4991 0.0009 0 0.9982 1 0.9991 0.9991

SVM-Rank 0.4826 0.4826 0.0174 0.0174 0.9652 0.9652 0.9652 0.9652
ENEL 0.3875 0.4922 0.0078 0.1125 0.9803 0.775 0.8656 0.8797

Tri-Gram Cosine 0.4423 0.4303 0.0666 0.0577 0.8691 0.8846 0.8768 0.8726
LR 0.4942 0.3712 0.1288 0.0058 0.7933 0.9884 0.8801 0.8654

SVM 0.4958 0.3589 0.1411 0.0042 0.7785 0.9916 0.8722 0.8547
Bi-Gram Cosine 0.4496 0.3794 0.1206 0.0504 0.7885 0.8992 0.8402 0.829
Jaccard Context 0.2444 0.3643 0.1357 0.2556 0.6430 0.4888 0.5554 0.6087
Cosine Context 0.4912 0.0116 0.4885 0.0088 0.5014 0.9824 0.6639 0.5028

Table 1: Performance Comparison via Precision and Recall

– WordNumMatch: the number of overlapped lemma-
tized words between mention’s context and entity’s de-
scription.

4) Learn to Rank We used SVM-RANK as the representa-
tion of Learn to Rank. We adopted the same features as
defined above.

5) Deep Learning We implemented state-of-the-art deep
learning algorithm (Kolitsas, Ganea, and Hofmann 2018)
(ENEL) as one of our baselines. In their original study, the
authors utilized a Wikipedia derived entity embedding.
But we utilized our own entity embedding for learning.

Comparison on Accuracy
We first compare the methods with Precision and Recall.
For an easier comparison, we scaled each of True Posi-
tive, True Negative, False Positive, and False Negative into
[0,0.5] showing as following.

– True Positive=
Count(Predict=1 & Truth=1)

2× Count(Truth=1)

– True Negative=
Count(Predict=0 & Truth=0)

2× Count(Truth=0)

– False Positive=
Count(Predict=1 & Truth=0)

2× Count(Truth=0)

– False Negative=
Count(Predict=0 & Truth=1)

2× Count(Truth=1)
The result is shown as Table 1, in which:

– Precision=
True Positive

True Positive + False Positive

– Recall=
True Positive

True Positive + False Negative

– F1-Score=2× Precision× Recall
Precision + Recall

– Accuracy = True Positive+True Negative

From Table 1, we find context based methods perform
poorly as expected. Descriptions in our knowledge graph
have very different wording styles from financial news. Sim-
ply comparing context words will definitely result in low
accuracy. SVM-Rank surprisingly outperforms ENEL. The
reason here is that ENEL does not model character features

#parameters # character
features

processing
time

JEL 10915800 151622 ∼1min/batch
ENEL 11021400 36 ∼20 min/batch

Table 2: Comparison among JEL and ENEL

properly. In SVM-Rank, we have carefully designed char-
acter features, (e.g., edit distance and tf-idf similarity), but
ENEL just embeds 36 single character embeddings. This re-
sult also indicates that without good character learning, even
deep learning could not solve the linking problem well.

JEL performs the best. We will mainly discuss the rea-
son that JEL outperforms ENEL. First JEL involves more
character features. ENEL just embeds 36 characters (26 let-
ters + 10 digits), but JEL computes 151622 character fea-
tures (as shown in Table 2). This configuration supports JEL
with a better performance in capturing character patterns.
For example, JEL could successfully link “Salarius Pharm
LLC” to “Salarius Pharmaceuticals” but ENEL missed this
link. Second, ENEL jointly embeds all characters and words
from context and mention itself into a mention’s vector,
and minimizes the distance between this mention vector and
a pre-trained entity embedding vector. However, the entity
embeddings themselves are generated without character in-
formation (Ganea and Hofmann 2017). Character embed-
dings in ENEL, especially character embeddings from con-
text words, somehow add noise to semantic embeddings, and
impact final performance. In addition, Table 2 gives a brief
overview of efficiency comparison between JEL and ENEL.
Although JEL and ENEL share similar number of parame-
ters, JEL trains faster than ENEL. JEL utilizes linear layers
to learn character patterns, which is easier to learn than an
embedding layer in ENEL.

Comparison on Precision
Accuracy can only check a method’s ability in distinguish-
ing positive samples from negative samples. In a real EL
task, we care more about a method’s ability in finding the
correct entity for a given mention. In this section, we uti-
lize the “Precision at top K (P@K)” to compare the methods
(shown in Figure 5 with K ∈ {1, 5, 10}). LR, SVM, and
SVM-Rank get 0s at all P@Ks. Both LR and SVM are clas-
sifiers, which are good at distinguishing positive pairs from
negative pairs. However, they may label multiple mention-

15306

Figure 5: Performance Comparison via P@K(Precision at
top K)

entity pairs as positive, but rank false positive pairs ahead.
The SVM-Rank’s failure is surprising. We believe the rea-
son lies in the training data. We only have 1 and 0 as labels,
but no specific ranking order, which is hard to obtain for a
0− 1 problem, to train the model solidly. Without a ranking
ground truth, SVM-Rank fails in our task. For the other four
methods, we rank entities based on distance or similarity.
JEL still achieves the best performance.

Deployment and Business Impact
JPMC has built a large-scale knowledge graph for internal
use, that integrates data from third party providers with its
internal data. The system contains several million entities
(e.g. suppliers, investors, etc.) and several million links (e.g.
supply chain, investment, etc.) among those entities 7. Entity
linking is one of the core problems that needs to be solved
when ingesting unstructured data. Currently, we are work-
ing closely with business units to process incoming news
articles to extract news about companies, and connect them
to the corresponding entities in the knowledge graph. Such
news analytics will support users across JPMC in discover-
ing relevant and curated news that matter to their business.

Here we present a concrete example of the use of such
news analytics. To protect the customer cofidentiality, the
actual name of the company has been changed, but the il-
lustrated computation is the same. “Acma Retail Inc” filed
for bankruptcy due to the pandemic, and a lot of JPMC
clients could feel stress as they are suppliers to Acma. Such
stress can pass deep down into its supply chain and trigger
financial difficulties for other clients. JPMC may face dif-
ferent levels of risks from suppliers with different orders in
Acma’s supply chain. With “Acma” mentioned in financial
news linked with “Acma Global Retail Inc” in our knowl-

7For proprietary reasons, we cannnot reveal the exact number
of nodes and links

edge graph (distinguished from “Acma Furniture, LLC”,
“Acma Enterprise System”, etc.), we can accurately track
down Acma supply chain, identify stressed suppliers with
different revenue exposure, and measure our primary risk
due to Acma’s bankruptcy. Once stressed clients with sig-
nificant exposure are detected, alerts will be sent out to cor-
responding credit officers. If “Acma” was linked with incor-
rect entities, it will result in too many false signals, resulting
in wasted effort.

A similar news analytics system, SNOAR, has been pre-
viously reported (Goldberg et al. 2003). SNOAR used a rule
based and fuzzy match techniques for entity linking, which
are not able to handle the example illustrated in Figure 1.
In fact, before JEL was developed, Tri-Gram Cosine Sim-
ilarity was tested for name string matching. As shown in
Table 1 and Figure 5, tri-gram cosine similarity has practical
limitations and could not distinguish entities sharing similar
names (as shown in Figure 1). Compared to fuzzy match or
tri-gram cosine similarity, JEL provides a better and more
controllable solution.

In the deployed version of JEL, we will apply another
blocking layer (overlap blocker for current configuration)
ahead of JEL to reduce the candidate volume for each men-
tion in an article. Entities sharing less than 2 bi-gram tokens
will be filtered out in the blocking stage, and the rest of can-
didate entities will be sent to JEL for a more sophisticated
linking proccess. This blocking process will dramtically re-
duce computational cost.

During the first-round deployment, we are incorporating
JEL into a streaming news platform, and its online perfor-
mance will be tested on indicators including:
– Scope: Ability in linking all available JPMC clients
– Timeliness: Ability in providing near real-time alerts
– Accuracy: Ability in sending accurate alerts
– Flexibility: Ability in integration of various components

for end-to-end delivery of solutions.
Our first step is to collect user feedbacks for parameter

fine-tuning and algorithm re-configuration. Once the initial
deployment is successful, we will release JEL as a stan-
dalone and reusable component with an API to provide a
firm-wide service that can be used in various applications.

Conclusion
Knowledge Graphs are becoming a mission critical technol-
ogy across many industries. Within JPMorgan Chase, we
are using a knowledge graph as a company-wide resource
for tasks such as risk analysis, supply chain analysis, etc. A
core problem in utilizing this knowledge is EL. Existing EL
models did not generalize to our internal company data, and
therefore, we developed a novel model, JEL, that leverages
margin loss function and deep and wide learning. Through
an extensive experimentation, we have shown the superiority
of this method. We are currently in the process of deploying
this model on a financial news platform within our company.
Even though our testing was done on our internal data, we
believe, that our approach can be adapted by other compa-
nies for entity linking tasks on their internal data.

15307

References
Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; and Shah,
R. 1994. Signature verification using a” siamese” time delay
neural network. In Advances in neural information process-
ing systems, 737–744.

Ceccarelli, D.; Lucchese, C.; Orlando, S.; Perego, R.; and
Trani, S. 2013. Learning relatedness measures for entity
linking. In Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management, 139–
148.

Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra,
T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir,
M.; et al. 2016. Wide & deep learning for recommender sys-
tems. In Proceedings of the 1st workshop on deep learning
for recommender systems, 7–10.

Cucerzan, S. 2007. Large-scale named entity disambigua-
tion based on Wikipedia data. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning (EMNLP-CoNLL), 708–716.

Eshel, Y.; Cohen, N.; Radinsky, K.; Markovitch, S.; Yamada,
I.; and Levy, O. 2017. Named entity disambiguation for
noisy text. arXiv preprint arXiv:1706.09147 .

Francis-Landau, M.; Durrett, G.; and Klein, D. 2016. Cap-
turing semantic similarity for entity linking with convolu-
tional neural networks. arXiv preprint arXiv:1604.00734 .

Ganea, O.-E.; and Hofmann, T. 2017. Deep joint entity
disambiguation with local neural attention. arXiv preprint
arXiv:1704.04920 .

Goldberg, H. G.; Kirkland, J. D.; Lee, D.; Shyr, P.; and
Thakker, D. 2003. The NASD Securities Observation, New
Analysis and Regulation System (SONAR). In IAAI, 11–18.

Han, X.; Sun, L.; and Zhao, J. 2011. Collective entity linking
in web text: a graph-based method. In Proceedings of the
34th international ACM SIGIR conference on Research and
development in Information Retrieval, 765–774.

He, Z.; Liu, S.; Li, M.; Zhou, M.; Zhang, L.; and Wang,
H. 2013. Learning entity representation for entity disam-
biguation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short
Papers), 30–34.

Huang, H.; Heck, L.; and Ji, H. 2015. Leveraging deep neu-
ral networks and knowledge graphs for entity disambigua-
tion. arXiv preprint arXiv:1504.07678 .

Kolitsas, N.; Ganea, O.-E.; and Hofmann, T. 2018. End-to-
end neural entity linking. arXiv preprint arXiv:1808.07699
.

Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami,
K.; and Dyer, C. 2016. Neural architectures for named entity
recognition. arXiv preprint arXiv:1603.01360 .

Martins, P. H.; Marinho, Z.; and Martins, A. F. 2019. Joint
learning of named entity recognition and entity linking.
arXiv preprint arXiv:1907.08243 .

Mihalcea, R.; and Csomai, A. 2007. Wikify! Linking docu-
ments to encyclopedic knowledge. In Proceedings of the six-
teenth ACM conference on Conference on information and
knowledge management, 233–242.
Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic reg-
ularities in continuous space word representations. In Pro-
ceedings of the 2013 conference of the north american chap-
ter of the association for computational linguistics: Human
language technologies, 746–751.
Milne, D.; and Witten, I. H. 2008. Learning to link with
wikipedia. In Proceedings of the 17th ACM conference on
Information and knowledge management, 509–518.
Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago:
A Core of Semantic Knowledge. In 16th International Con-
ference on the World Wide Web, 697–706.
Sun, Y.; Lin, L.; Tang, D.; Yang, N.; Ji, Z.; and Wang, X.
2015. Modeling mention, context and entity with neural net-
works for entity disambiguation. In Twenty-fourth interna-
tional joint conference on artificial intelligence.
Varma, V.; Pingali, P.; Katragadda, R.; Krishna, S.; Ganesh,
S.; Sarvabhotla, K.; Garapati, H.; Gopisetty, H.; Reddy,
V. B.; Reddy, K.; et al. 2009. IIIT Hyderabad at TAC 2009.
In TAC.
Yamada, I.; Shindo, H.; Takeda, H.; and Takefuji, Y.
2016. Joint learning of the embedding of words and en-
tities for named entity disambiguation. arXiv preprint
arXiv:1601.01343 .
Zhang, W.; Su, J.; Tan, C. L.; and Wang, W. T. 2010. Entity
linking leveraging: automatically generated annotation. In
Proceedings of the 23rd International Conference on Com-
putational Linguistics, 1290–1298. Association for Compu-
tational Linguistics.
Zheng, Z.; Li, F.; Huang, M.; and Zhu, X. 2010. Learn-
ing to link entities with knowledge base. In Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 483–491. Association for Computational
Linguistics.

15308

