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Abstract

We present a fast and efficient approach for joint person de-
tection and pose estimation optimized for automated driving
(AD) in urban scenarios. We use a multitask weight shar-
ing architecture to jointly train detection and pose estimation.
This modular architecture allows us to accommodate differ-
ent downstream tasks in the future. By systematic large-scale
experiments on the Tsinghua-Daimler Urban Pose Dataset
(TDUP), we obtain multiple models with varying accuracy-
speed trade-offs. We then quantize and optimize our network
for deployment and present a detailed analysis of the effi-
cacy of the algorithm. We introduce a two-stage evaluation
strategy, which is more suitable for AD and achieves a sig-
nificant performance improvement in comparison to state-of-
the-art approaches. Our optimized model runs at 52 fps on
full HD images and still reaches a competitive performance
of 32.25 LAMR. We are confident that our work serves as
an enabler to tackle higher-level tasks like VRU intention es-
timation and gesture recognition, which rely on stable pose
estimates and will play a crucial role in future AD systems.

Introduction
Significant progress has been made over the last decade on
video-based Vulnerable Road Users (VRU) detection. In the
area of driver assistance, this has led to the first commercial
active VRU systems reaching the market. In the context of
automated driving (AD) or future driver assistance systems,
it might be desired to infer a more detailed model of the
VRU behavior to cope also with more complex scenarios in
urban environments. While a human driver makes constant
judgments and driving decisions based on perceived VRU
context cues, such as intention (e.g. inferred by head and body
orientation, gait cycle) or explicit gestures (e.g. cyclist hand
gestures), this also motivates the estimation and use of such
cues for future driver assistance or AD systems (Aparicio
et al. 2017) (Kooij et al. 2019).

Unfortunately, the diversity of VRU appearance, owing to
clothing, pose, size, ethnicity, gender etc. presents a challenge
at perceiving and modeling VRU context cues accurately us-
ing image features. One way to solve this is an appearance
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Figure 1: An estimated articulated pose can serve as an effec-
tive intermediate representation for inferring the direction of
motion, intention or gesture of a VRU.

invariant representation, which is discriminative for down-
stream tasks such as intention and gesture estimation. As
shown in Fig. 1, articulated pose can be utilized to gener-
ate an appearance-invariant intermediate representation and
is widely supported in literature for modeling VRU behav-
ior like action recognition (Hariyono and Jo 2015), cross-
ing intention estimation (Fang and López 2019), trajectory
prediction (Rasouli et al. 2019) and gesture recognition (Tri-
pathi et al. 2019). Even though there have been great strides
in human pose estimation, there has been less focus from
the perspective of real-time applications such as AD use-
cases (Kothari et al. 2017) (Kress et al. 2018). Most renowned
approaches are either computation-intensive (He et al. 2017)
or memory-intensive (Huang, Zhu, and Huang 2019), mak-
ing them today not optimal for real-time AD applications
which demands inference on high resolution images with
high frame rates. Another challenge in tackling this prob-
lem is the lack of AD domain-specific pose datasets. While
there exist datasets (Lin et al. 2014) (Jhuang et al. 2013),
(Andriluka et al. 2014) for human action and pose estimation,
they are not of automotive-grade.

This paper proposes VRU Pose-SSD, an extensible VRU
detection and 2-D pose estimation model, optimized for de-
ployment on an AD platform. We explain the design choices
of our architecture along with adopted changes to attain a
faster model inference with minimum trade-off in accuracy.
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We adopt a new evaluation strategy to focus on the AD use-
case. Experiments are performed on the TDUP dataset (Wang
et al. 2020), an automotive-grade dataset focused on VRU in
challenging urban street scenarios.

Related Work
Detection: Object detection is a fundamental computer vi-
sion problem, often necessary as the first step in computer
vision pipelines to facilitate valuable semantic scene under-
standing. CNN-based object detectors can be classified into
two broad families, namely, two-stage detectors and single-
stage detectors. Two-stage detectors use Region Proposal
Network (RPN) (Ren et al. 2015), which generates object
proposals, and extracts feature crops from each proposal in
the first stage. Then, a classifier in the second stage predicts
labels for each object proposal produced by the RPN. Such
detectors mainly include the R-CNN family of detectors. On
the contrary, single-stage detectors directly predict the loca-
tion and class of the objects in a single step. The family of
single-stage detectors comprises of YOLO (Redmon et al.
2016) and its variants, SSD (Liu et al. 2016), RetinaNet (Lin
et al. 2017), etc. Both families incorporate anchors or prior
boxes, first introduced in Faster R-CNN (Ren et al. 2015),
which enables incorporating prior information on the aspect
ratio of the objects. Two-stage detectors tend to be heavy
but more accurate, while single-stage detectors are light and
more suitable for real-time object detection. There have been
works focusing on pedestrian and cyclist detection (Li et al.
2016) and (Braun et al. 2019) is a valuable benchmark dataset,
focusing on VRU in Urban Traffic Scenes. Recent work of
(Uhrig et al. 2018) Box2Pix has adapted SSD, a single-stage
detector for the AD use-case.

Human Pose Estimation: Human pose estimation is de-
fined as the problem of the localization of human joint-points
in an image. Approaches to multi-person pose estimation falls
into two categories: bottom-up and top-down. The bottom-up
approaches directly predict the joint-points and later asso-
ciate them, to obtain the corresponding pose for each human.
Pifpaf (Kreiss, Bertoni, and Alahi 2019) and Higher HRNet
(Cheng et al. 2019) are few notable works in this category.
In contrast, the top-down approaches constitute a detector,
to capture all instances of humans in an image and there-
after, the joint-points are localized for each instance. The
family of top-down approaches includes Mask R-CNN (He
et al. 2017), Dense Pose (Alp Güler, Neverova, and Kokkinos
2018), etc. For high-resolution images (2MP and above), the
association step in bottom-up methods suffers because of
increased complexity and memory constraints. Whereas the
run-time performance of top-down approaches are directly
proportional to the number of people present in the frame
(Dang et al. 2019).

Run-time Optimization and Deployment: Techniques
of model optimization and compression constitute a critical
role for their deployment in real-time systems. Various ap-
proaches to model compression, acceleration, and their conse-
quences are summarized in (Cheng et al. 2017). The authors
have classified optimization approaches into four categories:
parameter pruning and quantization, low-rank factorization,

transferred/compact convolutional filters, and knowledge dis-
tillation. Model compression can be accomplished either by
converting a pre-trained floating-point model into a fixed
point model without re-training (Settle et al. 2018) or by
training a deep neural net with a fixed point constraint (Chen
et al. 2017). We prefer converting a floating-point model ap-
proach as it does not need re-training and fits in a multi-task
training environment.

Contribution: We consider our main contribution to be
a principled, modular and extensible architecture for VRU
detection and pose estimation (VRU Pose-SSD) optimized
for the AD use-case. We describe a general and systematic
experimentation methodology and explore various possible
optimization techniques and their benefit, targeting a fast but
accurate detection and pose estimation model. Furthermore,
we introduce a joint evaluation scheme for detection and
pose estimation based on the log-average miss rate (LAMR),
which accounts for various AD-specific VRU characteristics
such as their proximity and visibility to the ego vehicle. While
our optimized models reach a competitive accuracy, they
run 1.6 - 4.1 times faster than well-known state-of-the-art
models (He et al. 2017) (Kreiss, Bertoni, and Alahi 2019).

Proposed Approach
Since bottom-up architectures often suffer from an increased
complexity and memory constraints when used with high-
resolution images, we opt for a top-down architecture based
on Mask-RCNN for human pose estimation as our starting
point and enhance it for our real-time requirements. During
inference, Mask R-CNN has five stages that run in sequence:
(1) feature extractor, (2) region proposal network, (3) detec-
tor head (classification and regression branches), (4) mask
head, and (5) non-maximum suppression (NMS). This or-
der of operations in the pipeline bottlenecks the inference
run-time making it run at 5 fps, which is considered slow
for our target application. Therefore, we modify the Mask
R-CNN architecture as follows to achieve a faster model. We
simplify the pipeline by replacing parts (1)-(4) of the Mask
R-CNN pipeline by adapting a single-stage detector (SSD).
Consequently we merge the Region Proposal Network (RPN)
and the detector head and finally performing NMS prior to
pose estimation, which eliminates the need to perform pose
estimation on a large number of detections.

We call this VRU Pose-SSD architecture. To summarize,
our architecture consists of four functional blocks: core net-
work, detector (SSD), Non-Maximum Suppression (NMS)
and Pose head (pose estimator) as shown in Fig. 2.

Architecture
Core Network: We choose Inception V1 (Szegedy et al.
2015) as it enables our model to process high resolution
images effectively and provide us the right trade-off w.r.t
computation and memory compared to other networks in
literature (Huang et al. 2017). The features from the core
network are used for the detection and pose estimation tasks
and we train the network end-to-end in a multitask setting
for run-time efficiency. We adapt the Inception V1 architec-
ture to have a larger receptive field by adding two additional
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Figure 2: VRU Pose-SSD architecture with four main blocks: core network, SSD, NMS and pose head. Inception V1 core
network is modified with addition of two more layers, inception (6a) and inception (6b), to capture larger receptive field.

inception modules, i.e. inception (6a) and inception (6b) as
suggested also in (Uhrig et al. 2018). This enables us to cap-
ture also larger objects, i.e. VRUs close to the ego-vehicle and
thus critical for our use case (e.g. pedestrian behind parked
cars, traffic control persons, cyclist driving in front). We ini-
tialize the core network with ImageNet pre-trained weights
and the additional new layers are randomly initialized.

SSD Adaptions: We adapt the SSD used in Box2pix ap-
proach (Uhrig et al. 2018) and modify it for detection of
VRU classes by adding distinct classes for pedestrian and
rider instead of human in addition to background. The mod-
ified SSD is as follows: (a) relative box parameter changes
are used instead of IoU for box matching, (b) nine different
prior boxes with different aspect ratios are designed to cover
different scales of VRU’s, i.e. one for inception (3b), two
for inception (4e) and inception (5b), and four for inception
(6b). The prior boxes are assigned to these layers based on
the receptive field of the respective layers to cover VRUs
of all scales and aspect ratios. To design prior boxes, we
use the strategy proposed by (Redmon and Farhadi 2017),
i.e. k-means clustering is applied to all the bounding boxes
in the training split to compute optimal cluster centers for
the data distribution. As the aspect ratios of both the classes
are similar, the assigned priors provides a perfect trade-off
between maximum recall and computation complexity (c) a
1× 1 convolution layer is used after every inception block to
regress box offsets and classification scores. The SSD output
is a N × (4 + 3) sized vector, where N is the number of
total prior boxes across all the scales, and for each prior box
we estimate four bounding box offsets, and three scores for
background, pedestrian and rider classes. We perform NMS
independently for both foreground classes and use an opti-
mized version that runs on the GPU to eliminate redundant
boxes.

Pose Head: We follow the COCO convention (Lin et al.
2014) and represent VRU pose as a set of 17 joint-points:
eyes, ears, nose, shoulders, elbows, wrists, hips, knees, and
ankles. This representation, widely used in literature encodes
meaningful information about the VRU pose. We use 2-D
pose estimation as this representation is sufficient for our

targeted use cases of intention and gesture recognition and a
better fit, taking into account our hard real-time constraints.
The bounding boxes after NMS, are cropped using Tensor-
Flow crop and resize which is similar to ROI align (He et al.
2017) but uses a different sampling strategy. Both share the
fundamental idea of preserving pixel to pixel alignment while
cropping features, crucial for localization tasks. We experi-
ment with features extracted from different layers: inception
(3b), inception (4e), inception (5b), and inception (6b). As the
actual pose head, we use a modified version of the fully con-
volutional network from Mask R-CNN. ROI crop output of
size 14×14 is passed through a stack of eight 3×3 128-d conv
layers followed by two de-conv layers (bilinear up-sampling),
to produce the output features of size 56× 56× 17. This is a
set of 17 heatmaps for all 17 joint-points of a VRU instance.
Spatial argmax is performed across each of these heatmaps
to estimate the joint-point location, and the coordinates are
then transformed to the image plane.

Multi-task Training

The modularity offered by a two-stage architecture of VRU
Pose-SSD allows a multitask network architecture, i.e. multi-
ple perception tasks can use the same core network. Thereby,
we expect this architecture to better scale for additional tasks.
We are also interested in inferring several features of VRU
such as intention, orientation, gestures, etc. A top-down
method allows us to offload specialized feature inference
to the second stage, while the first stage can be learned as a
generic feature extractor that can be shared across tasks. Thus,
we can ‘zoom-in’ on selective VRU instances (output from
NMS) and do additional processing, preserving computation
on the entire image. We perform joint training in an end-to-
end fashion, with three losses: detection, classification, and
pose. We use Focal Loss (Lin et al. 2017) for training the
classification branch and L2 regression loss for the bounding
box offsets. For the pose head, we use spatial cross entropy
loss to learn a 56× 56-way classification problem for every
joint-point along with loss weighing.
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Network Optimization
We aimed to achieve a frame rate of at least 50 fps for the
deployed VRU pose estimation model in order to allow the
computation of downstream algorithms in time. We opti-
mize our trained network in TensorRT to attain a low-latency
and a memory-efficient inference. Running the optimized
network on the GPU involves two phases: build and de-
ployment. In the build phase, the network parameters are
optimized to generate an inference execution engine. The
following optimizations are performed using TensorRT: layer
fusion, deletion of redundant layers, FP32 to INT8 calibra-
tion, and target hardware-specific auto-tuning. In the deploy-
ment phase, we load and de-serialize the plan file (saved
during the build phase) and run inference on the deployment
hardware. Throughout the training pipeline, the model is
trained using FP32 precision. Nevertheless, at the time of
inference, computations are executed with INT8 precision
with insignificant loss of accuracy. The quantization from
FP32 to INT8 needs an intermediate step called calibration.
Calibration minimizes the loss accuracy by adjusting the dy-
namic range and granularity of representable values for INT8
based on the activation. Calibration data is chosen randomly
from the validation sub set and is used in the calibration
step. The calibration data should be a representative of the
data distribution. As a result of the described optimization,
our model runs faster, yields higher throughput, and also
holds low latency during inference. Additionally, we explore
a simple scheme of linearly reducing the number of channels
throughout the core network, which can serve as an effective
method of obtaining networks of reduced run-time. All the
above optimization techniques mentioned here are applicable
to any of the state-of-the-art backbone architectures.

Evaluation
COCO mAP (Lin et al. 2014) is widely used metric to bench-
mark and compare the state-of-the-art object detection results.
Our focus being on AD use-case where the effects of False
Positives per Image (FPPI) and Miss Rate (MR) are better in-
terpretable than precision and recall, we choose log-average
miss rate (LAMR) (Dollar et al. 2011) as evaluation metric.
LAMR gives the MR over FPPI curve as a single value. For
pose estimation, COCO mAP metric is the widely used met-
ric, which introduces a similarity measure for joint-points
called Object Keypoint Similarity (OKS) (Lin et al. 2014).
OKS behaves like IoU for measuring how similar two skele-
tons are based on a score [0,1]. As we are not treating pose
as a primitive, which we detect directly, rather as a prop-
erty of an already detected VRU box, we adapt the metric to
reflect this. In the COCO mAP metric for pose estimation,
OKS is exclusively used for matching joint-point, making
the bounding boxes redundant. Instead, we propose a 2-step
matching procedure: first boxes are matched, followed by a
second step that compares joint-point of the matched boxes
to confirm matching of joint-points. We modify the LAMR
metric with the two-stage matching proposed above. As we
evaluate the AD use-case, we are more interested in high-
risk VRU instances in the vicinity of the ego car. Hence we
adopt a specific evaluation methodology based on VRU size
and visibility (refer Table 1). We use three bins and classify

Pedestrian / Rider
Reasonable Occluded Small

Settings

bbox ≥ 40px bbox ≥ 40px bbox ε (30px, 60px)
skel. ≥ 60px skel. ≥ 60px skel. ε (60px, 100px)
occl. < 40% occl. > 40% occl. ε (40%, 80%)
trunc. < 40% trunc. > 40% trunc. ε (40%, 80%)

Det. weight 0.35 0.10 0.05
Skel. weight 0.35 0.10 0.05

Table 1: Evaluation settings based on height and visibility of
the VRU instances. The metric is reported for pedestrian and
rider separately, and averaged over the two classes to get one
final value for joint optimization.

the instances into reasonable, occluded, and small based on
their height. The reasonable category is given a higher weight
as these instances are of utmost importance. The occluded
category is given next importance as it includes VRUs that
might be directly relevant for some scenarios, e.g. pedestrian
occluded by parked car. Moreover, the small instances are
far away from the car, they have been given the least impor-
tance. The detection and pose estimation accuracy for each
category are multiplied with their corresponding factors and
are summed up to a single value for the pedestrian and rider
class.

Experiments
Dataset
We use the Tsinghua-Daimler Urban Pose Dataset
(TDUP) (Wang et al. 2020) recorded in urban environments
around Beijing area in China. It consists of full HD image and
annotated for VRUs, categorized into pedestrian and rider.
Every VRU instance with height greater than 20 pixels is
annotated with a bounding box and instances greater than 60
pixels are annotated for both bounding box and additional
17 joint-points. Annotations contain additional bounding box
attributes for occlusion, truncation, etc. and joint-point at-
tributes like visible, occluded and self-occluded. The dataset
contains 21.4k images with 40k pedestrian instances and 53k
rider instances. Refer to (Wang et al. 2020) for more details
on the dataset,

Implementation Details
We train our model for 100 epochs with a batch size of 4
images using Adam optimizer with initial learning rate set
to 10−4. Learning rate is manually dropped by a factor of
10 twice at 64 and 80 epochs. Weight-decay is set to 10−4.
While training SSD Head, we train on boxes with a minimum
height of 40 pixels. We ignore boxes with occlusion and trun-
cation greater than 40%. We also reject boxes with attributes
depiction, sitting-lying and behind-glass, since we observe
that these type of instances do not help the detection training.
Similarly for the pose head, we reject joint-points that are
labeled as self-occluded. Results are reported as weighted
sum of LAMR values as discussed in the evaluation section.
We train and fine-tune the experiments on the train-val split
and present the final results on the test set.
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Results and Inference
The baseline model configuration is adopted from the state-
of-the-art Mask R-CNN architecture. Refer to Table 2 for
the detailed configuration. We perform two sets of experi-
ments to achieve the final run-time optimized model. In the
first set of experiments E1 we focus on identifying the best
hyper-parameters to improve the accuracy. We achieve this
by changing only one parameter across training runs. This
allows us to measure the individual contribution of each pa-
rameter. For the second set of experiments E2 we improve
run-time and preserve accuracy. For this we use the set of pa-
rameters from E1 and add them sequentially to the baseline
model. The results from E1 are presented in Table 2.

Core
N/W

ROI
crop
from

ROI
size

Pose head LAMR
(Ped. / Rider)#conv /

#chnls
Loss
wt.

(-) Baseline
GNet 4e 14 8 / 128 1.0 45.92 / 22.56

(a) ROI Extraction
GNet 3b 14 8 / 128 1.0 45.46 / 23.25
GNet 5b 14 8 / 128 1.0 47.35 / 23.08
GNet 6b 14 8 / 128 1.0 48.20 / 23.99
GNet PRA 14 8 / 128 1.0 46.64 / 22.90

(b) Pose head
GNet 4e 14 4 / 64 1.0 46.38 / 22.41
GNet 4e 14 6 / 64 1.0 46.78 / 22.91
GNet 4e 14 8 / 64 1.0 46.14 / 22.36
GNet 4e 14 8 / 256 1.0 46.20 / 22.50
GNet 4e 14 8 / 512 1.0 46.17 / 22.82

(c) ROI and output resolution
GNet 4e 12 8 / 128 1.0 45.34 / 23.13
GNet 4e 24 8 / 128 1.0 46.92 / 23.25
GNet 4e 28 8 / 128 1.0 46.75 / 23.24

(d) Loss weighting
GNet 4e 14 8 / 128 0.5 45.29 / 22.44
GNet 4e 14 8 / 128 1.5 47.95 / 24.23
GNet 4e 14 8 / 128 2.0 48.77 / 24.93
GNet 4e 14 8 / 128 2.5 49.52 / 25.15

(e) Feature Pyramid Network (FPN)
FPN-64 4e 14 8 / 128 1.0 44.90 / 22.19
FPN-128 4e 14 8 / 128 1.0 44.07 / 21.60
FPN-256 4e 14 8 / 128 1.0 43.99 / 21.51
FPN-512 4e 14 8 / 128 1.0 44.50 / 21.21

(f) Core network capacity
GNet 4e 14 8 / 128 1.0 50.77 / 25.35
GNet-90 4e 14 8 / 128 1.0 51.21 / 25.08
GNet-80 4e 14 8 / 128 1.0 51.63 / 26.10
GNet-70 4e 14 8 / 128 1.0 53.82 / 26.91
GNet-60 4e 14 8 / 128 1.0 54.48 / 27.45
GNet-50 4e 14 8 / 128 1.0 56.55 / 28.25

Table 2: Experimental results of our method trained and
evaluated on TDUP dataset to determine the best performing
model (E1). GNet refers to GoogLeNet and GNet-X refers
to reduced capacity of the core network with ‘X’ being the
capacity of the GoogLeNet.

We target the important blocks in the architecture that
potentially can impact the accuracy and fine-tune them as

follows: (a) ROI extraction strategy: We experiment with
different ROI extraction methods such as Adaptive Feature
Pooling (AFP) and pyramid ROI align (PRA) for ROI ex-
traction and ROI crops from different layers. We notice that
crop features from inception (3b) improves the performance
over the baseline. (b) Pose head: Here we vary the number
of conv. layers and channels in the pose head. We find that
a much lower number of channels (64) as compared to the
baseline (128) works equally well. (c) ROI and Output res-
olution: We apply different output sizes of the ROI crops
and we observe that a ROI layer size of 12 × 12 gives the
best result. (d) Loss Weighting for pose head: We use dif-
ferent loss weights for the pose head (0.5, 1.5, 2.0 and 2.5)
and observe that using loss weight of 0.5 results in best per-
formance. (e) Feature Pyramid Network (FPN) (Lin et al.
2017): We use FPN with different number of channels (64,
128, 256 and 512). The experiment result shows that all the
configurations for FPN gives similar improved accuracy but
we do not consider these experiments to achieve our final
model as FPN consume more memory and run-time. (f) Core
Network capacity: We prune the core network capacity to
50%, using a decremental factor of 10. We perform this set
of experiments to study the impact on the performance with
reduction on the number of channels in the core network.
We do not use ImageNet initialization for these experiments.
Accuracy drops with decrease in number of channels.

Exp.
ID Experiment Details Ped.

LAMR
Rider
LAMR

Final
Timing

A Baseline 45.92 22.56 22.45
Performance Experiments

B + ROI crop from 3b 45.46 23.25 21.57

C + ROI crop size 12× 12
output res. 48× 48

45.86 23.32 20.23

D + Pose head conv/channels
8/64, loss weight 0.5 43.56 20.94 19.41

Prune Experiments
E - ImageNet init 48.99 24.35 19.41
F + Core Network 90% 49.68 25.32 18.76
G + Core Network 80% 50.54 25.46 18.05
H + Core Network 70% 51.42 26.25 17.26
I + Core Network 60% 52.75 27.46 16.43
J + Core Network 50% 54.40 28.54 15.14

Table 3: Incremental adaptations of best results from Table 2,
along with incremental timing improvements by channel
reduction (E2).

Based on the observations from E1, the second set of
experiments E2 is performed in a sequential manner and we
present the result in Table 3. All the timings reported here
are after TensorRT INT8 quantization as described in the
Network Optimization section. The outcome of E2 is the
final model optimized for both performance and run-time. In
the final model, we extract features from inception (3b), use
ROI crop size of 12 × 12, pose head size is 8 conv. layers
and 64 channels. We use loss weight of 0.5 for the pose
head. We chose these parameters such that it facilitates us to
reduce the model run-time with minimum loss in accuracy.
The final model is 3.1 ms faster than the baseline model
with equal performance. After we obtain our best model,
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Figure 3: Accuracy vs. Speed plot for E2. The orange circle
depicts our baseline model. D (in green) depicts the best
performance model. Refer Table 3 for experiment id and
names in the plot. The ideal model would be closest to the
origin as LAMR metric lower is better.

LAMR Pedestrian / Rider
Reasonable Occluded Small

Detection 37.55 / 16.86 68.55 / 40.44 64.27 / 35.67
Skeleton 34.39 / 13.48 62.62 / 36.47 41.10 / 17.10
Combined
(Det. and Skel.) 43.56 / 20.94

Final
(Ped. and Rider) 32.25

Table 4: Detailed numbers showcasing the final metric calcu-
lation for LAMR as explained in Table 1.

we continue with a set of experiments by pruning the core
network channels to get a speed-vs.-accuracy trade-off curve.
This curve helps us to determine various operating point from
which we can select a model based on either performance
or run-time. The results of these pruning experiments are
presented in Table 3 and the speed-vs.-accuracy curve is
shown in Fig. 3. We remove ImageNet initialization for this
set of experiments. From the Fig. 3 we can observe that
channel reduction is a straightforward way to reduce time
with minimum accuracy trade-off. In Table 4 we present
the detailed metrics for our final model. We showed how our
model is performing on reasonable, occluded and small boxes
and also presented the combined LAMR values for detection
and skeleton and final LAMR value for pedestrian and rider.

We benchmark the results of our final model and com-
pare it with the state-of-the-art Mask R-CNN model both
trained on TDUP dataset in Table 5. The inference time in

Model Ped.
LAMR

Rider
LAMR

Avg.
LAMR

Timing (ms.)
Tensorflow INT8

Mask R-CNN 42.47 19.32 30.90 79 -
Our final model 43.56 20.94 32.25 48.5 19.41

Table 5: Performance comparison to state-of-the-art Mask
R-CNN architecture using a ResNet-50 backbone compared
to our final model, on the TDUP test set.

Figure 4: Qualitative results of our algorithm on TDUP.

TensorFlow for our final model is 48.5 ms during inference,
while after quantization to TensorRT (INT8), we achieve
a run-time of 19.41 ms. That is, the model runs 2.5 times
faster following TensorRT optimization. We did not optimize
the Mask R-CNN model as we already notice that our un-
optimized final model is significantly faster than the Mask
R-CNN model. Also the Mask R-CNN architecture can not
be directly converted to tensorRT model and is out of scope
for this paper. Pedestrian LAMR is significantly worse when
compared to the rider LAMR. Our initial analysis suggests
that this is because riders are found mostly on the street, and
thus background clutter and occlusion are less pronounced
compared to the pedestrian case.

Qualitative results in Fig. 4 showcase the performance of
our final model on the test set. We observe a good perfor-
mance even in challenging and crowded urban scenarios. We
present some of the instances with the best results and a few
examples of failure cases for our pose estimation model in
Fig. 5. We use COCO-analyze tool and mainly concentrate on
localization errors for our analysis which are : (a) Miss, (b)
Jitter, (c) Inversion and (d) Swap. We present the analysis
of join-point errors in Fig. 6. Please refer (Ronchi and Perona
2017) for more detailed information. From Fig. 6, it is evident
that for knee and ankle joint-points, i.e. the joint-points in
the lower-body are more prone to inversions and miss errors,
as there are fewer visual cues to distinguish left from right.
Whereas, for joint-points in the face i.e. nose, eyes, and ears,
the miss error rate is very low, indicating that they are easily
detectable compared to other joint-points.

Discussion
Our optimized architecture reaches an inference time of
48.5 ms / 19.41 ms per frame with the TensorFlow / Ten-
sorRT model. This is 1.6 / 4.1 times faster compared to the
Mask-RCNN TensorFlow implementation and enables the
usage in real-time AD applications. At the same time we
still reach a competitive combined accuracy of 32.25 LAMR
(cf. Mask-RCNN with 30.90 LAMR). As we use a top-down
approach, pose estimation is dependant on the accuracy of
the detector. One way to improve the detector performance

15336



Figure 5: Some close-up results of best cases (first two rows) and failure cases (last row). We observe that the model has
generalised for poses like walking and riding, even in scenarios with occlusion and truncation. However, our algorithm tends to
fail for rare poses and in heavily crowded scenes. The last row depicts the type of common errors as described in Fig. 6. From
left to right: Miss error (1-3), inversion (4-6), swap error (7, 8).

Figure 6: Analysis of types of errors in pose estimation using
COCO analyse. The stats are generated on test set.

is to use active learning techniques (Haussmann et al. 2020).
The most prominent errors in pose estimation are inversion
and swap errors. We plan to correct those wrong joint-point
estimates by using additional temporal information for pose
estimation (Girdhar et al. 2018). Pose estimates also suffer
when the detector fails to detect multiple overlapped VRUs in
a crowded scenario. While the downstream task of intention
estimation expects a robust pose estimation also in crowded
scenario, we plan to adopt the part association field method-
ology from (Kreiss, Bertoni, and Alahi 2019) to improve

performance in such cases occlusion in particular.
We further plan to derive several contextual cues based on

our robust pose estimates to compute more informed predic-
tions (Rudenko et al. 2020). Preliminary experiments suggest
that the estimated pose quality gives already a decent per-
formance in estimating such cues for intention estimation
and gesture recognition. This can be further improved when
combined with time series modeling approaches.

Conclusions

We have presented a fast and efficient approach to VRU detec-
tion and pose estimation for real-time AD applications. With
extensive experiments, we designed and optimized the net-
work for accuracy and speed trade-offs. While the accuracy of
our model (32.25 LAMR) is competitive with Mask-RCNN
(30.90 LAMR), our TensorFlow model is 1.6 times faster
and respectively 4.1 times faster after TensorRT conversion,
resulting in a final inference time of 19.41 ms per frame
(52 fps). The introduced evaluation strategy will benefit the
systematic evaluation of estimated VRU poses for the AD
use-case. We are convinced that the reported performance
enables reliable estimation of important contextual cues like
intentions or explicit gestures, making future AD systems
better react to their environment.
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