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Abstract

Frequency control is an important problem in modern recom-
mender systems. It dictates the delivery frequency of recom-
mendations to maintain product quality and efficiency. For
example, the frequency of delivering promotional notifica-
tions impacts daily metrics as well as the infrastructure re-
source consumption (e.g. CPU and memory usage). There re-
main open questions on what objective we should optimize
to represent business values in the long term best, and how
we should balance between daily metrics and resource con-
sumption in a dynamically fluctuating environment. We pro-
pose a personalized methodology for the frequency control
problem, which combines long-term value optimization us-
ing reinforcement learning (RL) with a robust volume con-
trol technique we termed “Effective Factor”. We demonstrate
statistically significant improvement in daily metrics and re-
source efficiency by our method in several notification appli-
cations at a scale of billions of users. To our best knowledge,
our study represents the first deep RL application on the fre-
quency control problem at such an industrial scale.

Introduction
Frequency control is a common and essential problem in
recommender systems. A successful recommender system
should have careful control of the recommendation deliver-
ing frequency in order to foster an engaging interaction with
users while consuming infrastructure resources minimally.
For example, social media platforms use promotional Emails
to remind users of missed information but also aspire to min-
imize the delivery volume to avoid resource waste or creat-
ing spams (Gupta et al. 2016; Gupta, Liang, and Rosales
2017; Zhao et al. 2018a). Generally speaking, an increase of
delivery frequency is able to improve product metrics tran-
siently at the cost of infrastructure resources. However, too
frequent recommendation may result in user fatigue in the
long term (Ma, Liu, and Shen 2016; Gupta et al. 2016) and
potential risks of shutting down of recommendation chan-
nels by users (Iqbal and Horvitz 2010).

Existing works converted the frequency control problem
into constrained optimization, putting daily metrics and re-
source consumption into the objective and constraints sep-
arately to counteract with each other (Gupta et al. 2016;
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Gupta, Liang, and Rosales 2017; Zhao et al. 2018a). How-
ever, the daily metrics were still defined based on short term
(e.g., user activeness in one day) or based on heuristics. In
the industry, companies care most about accumulated daily
metrics and resource consumption over the long term, which
we believe should be reflected in the optimization objective
in a more principled way. In this light, frequency control
should be a sequential decision problem as the user inter-
acts with the recommender system continuously. We illus-
trate with the following motivating example where previous
methods fall short. An inactive user has low interest to rec-
ommendations that an constrained optimization algorithm
never considers it worth any system resources to deliver rec-
ommendation to the user. However, a sufficient amount of
recommendations in multiple waves would change the user
behavior, turning the user into a regular active one. Clearly,
an algorithm that can plan its decisions sequentially will win
in the long run.

This paper proposes a methodology for learning fre-
quency control policies that optimize long-term accumu-
lated measurements with the sequential nature of decisions
in mind. We leverage reinforcement learning (RL) to learn
the value of different frequencies, defined as the best pos-
sible accumulated daily metrics and resource consumption
since the product is delivered at the frequency. The accumu-
lation measurements represent the potential performance of
a system in the long term and are closer to common business
metrics companies aim to lift. RL has been demonstrated
to be capable of learning long-term values of decisions in
complex sequential-decision domains such as games (Mnih
et al. 2015a) and robotics (Rajeswaran et al. 2017), where
accumulated rewards are more important than the immedi-
ate reward at any single step. Take Go for an example. It is
useful to evaluate a move based on whether it contributes to
the final victory but less useful (and sometimes deceptive) to
know whether the move brings short-term board advantage.
Similarly, the frequency control can also be formulated as a
sequential decision problem where a sequence of decisions
on delivery frequency would collectively optimize long-term
(accumulated) daily metrics and resource usage. In partic-
ular, we choose to apply Deep Q-Networks (DQN), an off-
policy value-based reinforcement learning algorithm (Sutton
and Barto 2018) to estimate the values of (user, frequency)
pairs.
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Another challenge we aspire to solve is to stabilize global
delivery volume at deployment, for which we propose a
simple yet robust technique termed “Effective Factor”. In
a large-scale industrial setting, we observed that the policy
directly derived from the values learned by DQN could re-
sult in noticeable fluctuation in global delivery volume be-
cause the user and system behavior could shift day by day in
the real world. While the data shift is not drastic generally,
the change in delivery volume can be significant enough to
trigger alerts from other monitoring systems present in mod-
ern platforms. Even recurrent training cannot help RL mod-
els catch up with the latest data shift because RL models
train on user history data spanning a few weeks. Therefore,
we propose Effective Factor which monitors global delivery
volume and acts on top of DQN to stabilize output frequen-
cies dynamically.

Contributions. Our study represents:

• Formulate the frequency control problem as a sequential
decision problem.

• Propose to solve the frequency control problem by rein-
forcement learning and Effective Factor (dynamic volume
control).

• Evaluate our method and show positive gains in both daily
metrics and resource savings in several applications at a
scale of billions of users.

To our best knowledge, our work has been the first deep
RL-based algorithm for the frequency control problem that
has been validated by experiments at a scale of billions of
users. The rest of the paper is outlined as follows. We first
introduce related works. Then, we propose our methodol-
ogy in learning long-term values and stabilizing frequency
control policies using “Effective Factor” (Methodology Sec-
tion). We then evaluate our method in several real-world rec-
ommendation applications (Applications and Experiments
Section). Importantly, the proposed methodologies can be
easily applied to other frequency control cases with minor
modifications.

Related Work
The works most relevant to ours come from large-scale so-
cial media platforms (e.g., LinkedIn and Pinterest), which
involved constrained optimization balancing between deliv-
ery volume and daily metrics (Gupta et al. 2016; Gupta,
Liang, and Rosales 2017; Zhao et al. 2018a). Gupta et al.
frames the frequency control problem as a Multi-Objective
Optimization (MOO) problem (Gupta et al. 2016). The ob-
jective is to minimize the expected delivery volume as the
sum of individual emails’ delivery probabilities. The ob-
jective comes with the constraints mandating that posi-
tive/negative user experience should be above/below cer-
tain thresholds. Later, they extended the constraints to in-
clude sitewide engagement, such as the total number of ac-
tive users on a platform (Gupta, Liang, and Rosales 2017).
The solution can be obtained from a large-scale quadratic
programming solver. However, their formulation indicates
a strong independence assumption between emails, which
is unable to represent the sequential effect of recommen-

dation delivery in real-world applications. Zhao et. al pro-
posed another constrained optimization technique which re-
laxes the independence assumption between emails (Zhao
et al. 2018a). Under a total volume constraint, they searched
for the best frequency f for each user u that contributes
most p(a|u, f), the conditional probability of u being ac-
tive. p(a|u, f) is directly predicted by supervised learning
models based on user features and the delivery frequency.
However, it remains as heuristics as for what constitutes the
user activeness label. More importantly, the delivery deci-
sions are still made independently, without considering that
a sequence of decisions could change daily metrics differ-
ently .

Reinforcement learning (RL) has been successful in learn-
ing policies for sequential decision problems in various do-
mains such as video games (Mnih et al. 2015a; Vinyals
et al. 2019), board games (Silver et al. 2016), real-time
bidding (Wu et al. 2018), and robotics (Rajeswaran et al.
2017). Its strength of capturing long-term effect also at-
tracts researchers working on recommender systems to use
RL for retrieving engaging items (Zhao et al. 2018b; Zheng
et al. 2018; Cai et al. 2017). In the notification domain,
the reinforcement learning approach has achieved success
recently (Li 2019), in a similar motivation of viewing rec-
ommendation as a sequential decision problem. Gauci et al.
reported successful applications of an RL-based policy in
the notification sending framework to improve daily met-
rics (Gauci et al. 2018). However, the application exclusively
focused on making send/drop decisions for individual noti-
fications but did not consider how a learned policy would
interact with infrastructure resources such as delivery vol-
ume.

There is a relevant branch of research on frequency cap-
ping for advertisements (Feldman et al. 2009; Farahat 2009;
Shanahan and den Poel 2010). The goal of frequency cap-
ping for an ads server is to provide a supply-demand match-
ing between advertisers who want to avoid repeated displays
to the same user and users who arrive sequentially in an un-
known pattern. However these studies share a different goal
than us in that they put caps on frequencies per user rather
than on the global delivery volume of a system.

Methodology
Problem Definition
As we stated in Introduction, the core idea of frequency con-
trol is to keep a right pace of recommendation delivery in
order to maintain accumulated daily metrics as well as min-
imize resource consumption. While increasing delivery fre-
quency can usually boost short-term product metrics, it is
at the cost of infrastructure resource consumption and long-
term user experience. Therefore, frequency control should
be considered as a sequential decision problem where prod-
uct delivery at a series of frequencies determines overall
user experience and resource consumption together. We for-
malize the frequency control problem as a Markov Deci-
sion Process (MDP) (Bellman 1957), a classic framework
for solving sequential decision problems. Specifically, the
MDP is designed with the following ingredients:
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• state space S , which defines user features such as the
user’s profile and historical interactions with the product.

• action space F , which defines the possible frequencies
to deliver recommendation. In this paper, we focus on a
finite action space with a set of predefined frequencies.
Recommendation will be delivered at one of these prede-
fined frequencies each time a decision is due.

• reward functionR : S×F → R, which denotes the quan-
titative measurement of daily metrics and resource con-
sumption obtained by delivering recommendation f ∈ F
times to the user with s ∈ S . In our work, we use a lin-
ear reward function:R(s, f) = mu(s)−εf . It encourages
daily metricsmu(s) while penalizing linearly with the de-
livery frequency because we want to keep down resource
consumption.

• transition function T : S×F → S , which reflects how the
user state would adapt after recommendation is delivered
at frequency f to the user.
The optimal frequency control policy maximizes the ac-

cumulated discounted rewards since each user state st:

π∗ = argmaxπ Esi,fi∼π

[ ∞∑
i=t

γi−tR(si, fi)

]
, (1)

where γ is a discount factor which balances the focus of
the policy between near-term and longer-term rewards.

Deep Q-Network for Value Learning
Q-learning is a classic RL algorithm in which it seeks for π∗
by first learning the state-action value, Q∗(st, ft):

Q∗(st, ft) = maxπQ
π(st, ft) (2)

Qπ(st, ft) = R(st, ft) + Esi,fi∼π

[ ∞∑
i=t+1

γi−tR(si, fi)

]
(3)

Q∗(st, ft) is the maximal possible accumulated rewards
that could be obtained by any policy. Intuitively, Q∗(st, ft)
measures how promising delivering recommendation with
ft frequency to a user st would lead to the best long-term
gain. Therefore, we treat Q∗(st, ft) as a good proxy of the
long-term value of ft for the user state st.

One can use the learned Q∗(st, ft) values to derive the
optimal policy equivalent to Eqn. 1:

π∗(st) = argmaxftQ
∗(st, ft) (4)

Q-learning uses the Bellman update to learn the Q∗ func-
tion (with α as the learning rate):

Q̂(st, ft) = (1− α)Q̂(st, ft)+

α

(
R(st, ft) + max

ft+1

Q̂(st+1, ft+1)

) (5)

Since our state space contains real-world user features
which can be high-dimensional, we choose to train with

Deep Q-Network (DQN) (Mnih et al. 2015b) with deep
neural networks as function approximation of Q̂(·, ·). We
use standard training techniques to train the Double Q-
Learning (Hasselt 2010) such as Dueling Networks (Wang
et al. 2016) in order to make learning easier and more sta-
ble (Gauci et al. 2018).

Effective Factor
Although in theory we can use a trained DQN and Eqn. 4
as a serving policy, it often results to jittering global de-
livery volume as real-world environments are shifting dy-
namically. The shifts in user behaviors or system resource
usage are generally slow but still significant. We hypothe-
size the shifts come from temporal effects (e.g., more traf-
fic on the weekend or holidays than a weekday) and inter-
nal changes (e.g., changes in the upstream/downstream ser-
vices, throttles/constraints newly enforced into the system).
In our real-world preliminary tests we found that the global
delivery volume could fluctuate by a low but significant level
(10 ∼ 20%) to trigger alerts from in-house monitoring sys-
tems.

While companies would like to see long-term gain in daily
metrics and resource consumption, they also hope to stabi-
lize global delivery volume. Recurrent training cannot help
RL models catch up the latest user/system behavior shift be-
cause RL models train on user history data spanning a few
weeks. It is also not easy to massage the reward function,
particularly ε which we use to control the impact of resource
consumption, to get a stable global delivery volume. Be-
cause the relationship between recommendation frequency
and global resource consumption may not be easily defined
as a linear function.

We propose a simple yet robust technique called “Effect
Factor” on top of Q-values to stabilize global delivery vol-
ume in real time. The technique works for our cases where
the action space has at least 3 predefined frequencies1. First,
We define the maximal incremental value of Q-values of a
state as:

∆Q∗(s) = maxf ′Q∗(s, f ′)−minf ′Q∗(s, f ′) (6)

Then, we define an adjustable scalar EF ∈ [0, 1] and a fre-
quency control policy based on EF and ∆Q∗(s):

πEF (s) =

min {f | Q∗(s, f) ≥ minf ′Q∗(s, f ′) + EF ·∆Q∗(s)} ,
(7)

where πEF (s) can be intuitively explained as finding the
minimal frequency that achieves a sufficient level of the
maximal incremental value.

We observed in practice that tuning EF has a predictable
effect on daily metrics and resource consumption: for most
states, as f increases, Q∗(s, f) would be monotonically
increasing, monotonically decreasing, or vary with a bell
shape (See Fig. 1 for example). Although adjusting EF

1When the action space has only two possible actions, the prac-
titioner can design a simpler heuristic.
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Figure 1: Illustration of the Effect Fac-
tor technique. The incremental reward
(y-axis) by the selection of various de-
livery frequency (x-axis) is quantified by
[Q∗(s, f)−minf ′Q∗(s, f ′)] /∆Q∗(s). The
returned delivery frequency for each user in the
online serving is the minimal frequency that
achieves minf ′Q∗(s, f ′) + EF ·∆Q∗(s).

Figure 2: System Overview. The system consists
of (1) a data pipeline to collect RL training data;
(2) a recurring training pipeline of DQN models
on a daily basis; (3) an effect factor controller,
which reads predefined configurations, monitors
real-time global volume, and adjusts dynami-
cally; and (4) an online serving system. In the
RL application, the clients provide either a fixed
value of effect factor or a predefined target de-
livery volume. If latter, a PID controller will be
applied to adjust the effect factor in online serv-
ing automatically.

could result to slow change for daily metrics and resource
consumption of a single user, from a global view adjusting
EF brings very immediate and monotonic change in terms
of the overall delivery volume.

Since EF is a responsive and monotonic knob for tuning
the global delivery volume, we employed a proportional-
integral-derivative (PID) controller (Åström and Hägglund
1995) to dynamically adjust EF in order to stabilize the
global delivery volume. To guide directions and magnitudes
of adjustment, PID controllers calculate the proportional, in-
tegral, and derivative of the differences between a target de-
livery volume and actual delivery volumes. To run the PID
controllers, a client team will first set a global target deliv-
ery volume in a configuration file. We have a service run-
ning continuously to aggregate and store the actual global
delivery volume. A recurring job is periodically (e.g., per
10-min) executed to check the difference between the actual
and target delivery volume, based on which EF is dynami-
cally adjusted. We observed that PID controllers worked as
expected: whenever the actual global delivery volume ex-
ceeds the expected volume, PID controllers will lower the
EF ; if the actual volume goes in the opposite direction, PID
controllers will increase the EF instead. We can also assign
different values of EF for different user cohorts based on
product needs.

It is worth noting that although the EF -intervened policy
would deviate from the optimal policy specified in Eq. 4,
EF is set in practice to cause only very mild deviation, and
we can still see gains in metrics we would like to lift.

Applications and Experiments
We built a personalized frequency control system to sup-
port our RL-based methodology described in the Method-
ology Section. An overview of our system can be seen in
Figure 2. We use the “notification scheduling” domain as
a test bed for our RL-based methodology. We believe our
method can be extended to other applications that need de-
livery frequency control in general. Notifications is an im-
portant recommendation channel in social network products
to deliver missed information to users. While some notifica-
tions are triggered by user activities (e.g., direct messages),
we focus on those scheduled daily to target users for pro-
motional purposes (e.g., reminding users of missed content
or suggesting new friends to connect). The notifications are
scheduled in advance (e.g. one day ahead), at which time
we need to determine how many notifications to schedule
on the delivery day. Our scheduling frequency ranking plat-
form is only responsible for determining the frequency of
notification scheduling. The actual content of scheduled no-
tifications is determined by downstream rankers, which can
be seen as part of the MDP environment of which the fre-
quency control policy has no direct control.

Training
To have a comprehensive evaluation of our methodol-
ogy, we tested on five different notification types which
serve different products and run in different channels
such as email and mobile push. For business reasons, we
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will not reveal exact notification types but denote them
as notif type1, . . . , notif type5, each of which reaches
billion-scale users. We allocated a 0.5% user segment traffic
for training data collection. Whenever a scheduling decision
was due for a user, one of six predefined frequencies was
chosen to apply (i.e., F = {f1, f2, . . . , f6}). We joined data
over user identities such that each user’s complete schedul-
ing history (30 tuples of (st, ft, R(st, ft), st+1) ) are in-
cluded in the final training data. There are totally 50 ranking
features used for the model training and prediction, includ-
ing user-level features and user-notification interaction fea-
tures. We used an open-source applied reinforcement learn-
ing platform ReAgent to train the DQN model (Gauci et al.
2018).

The hyperparameters (e.g., neural network size, learning
rate, etc.) of the DQN model are hand-picked without too
much fine-tuning. The discount factor γ is tuned in the range
from 0.25 to 0.9 based on the online experiment results. The
daily metric measurement in the reward, mu(s), is itself
a linear function of two different daily metrics. The linear
weights of the daily metrics and ε appeared in the reward
function, as well as the target global delivery volume, were
hand-tuned after 2 to 3 experiment iterations of online A/B
tests to achieve accepted trade-offs between daily metrics
and resource consumption. In the first iteration, we began
with ε = 0.005× daily metrics and searched its neighbor-
hood. In the next iterations, we searched with greater gran-
ularity around the ε that gave us the most acceptable trade-
off from the previous iterations. The agreement of trade-offs
was reached by discussing with other stakeholders such as
product managers.

Results
The online experiments in this study were performed on the
2-4% (around 50 million users for each notification type)
of the whole monthly active users (∼ 2.5 billion). We com-
pared the performance between our RL-based approach and
the current rule-based frequency control product policy. We
observed that the RL-based approach has a significantly bet-
ter efficiency ratio (=daily metrics / delivery volume) than a
human-crafted rule-based approach across all the five notifi-
cation types (Table 1). In addition, we tracked the two daily
metrics included in mu(s) and the delivery volume, which
showed consistent trends over time (See Figure 3 for such
analysis from one notification type). This shows the possi-
bility that we can improve individual metrics collectively by
a linear reward shaping. In addition, we observed that re-
ward functions without ε penalty results in lower delivery
efficiency (daily metrics / delivery volume) and we have
to end the experiment prematurely to avoid further negative
impact.

To have a better understanding of our methodology, we
made a case study on one chosen notification type with data
tracked over 30 days. The global delivery volume during the
experiment period is stable (not shown). Figure 4 shows the
frequency distribution, which exhibited small fluctuation for
each frequency. At the user level, we found that around 40%
users always received the same predicted frequency number
and the other users received fluctuated predicted frequency

Figure 3: Time series of schedule volume and
two daily metrics. The latter two are linearly
combined in mu(s) in the reward function.

𝑓! 𝑓" 𝑓# 𝑓$ 𝑓%

Figure 4: Global frequency distribution over the
experiment period.

Figure 5: Standard deviation of frequencies per
user over the 30 days. Around 40% users re-
ceived a constant frequency while the rest re-
ceived varied frequencies under our policy.
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notif type1 notif type2 notif type3 notif type4 notif type5

delivery volume -5.0% -7.6% +0.9% -5% +6.3%
daily metrics + 6.6% + 11.7% +17.2% Neutral +12.3%

efficiency ratio +12% +19% +16% +5% +6%

Table 1: Performance of our methodology compared to the current production setting. It achieves higher efficiency ratio
(=daily metrics / delivery volume) in all notification types.

Activity cohort High Medium Low

Delivery volume -20.6% -15.9% -10.8%

Daily Metric 1 +12.3% +16.5% +3.8%

Daily Metric 2 +0.0419% +0.0297% +0.1089%

Table 2: User cohort analysis for one notification type. Re-
sults are compared to the current production policy.

over time, as indicated by the standard deviation of received
frequencies per user (Figure 5). Breaking down users into
three cohorts (highly, medium, and lowly active) according
to their profiles during the experiment, we found reduction
in the sending volume and improvement in individual daily
metrics (the two used in the reward function) in all user co-
horts (Table 2).

We also investigated the characteristics of EF . We found
that once client teams set a reasonable target global delivery
volume, EF were dynamically adjusted by PID controllers
mostly in the range from 0.75 to 1.0, which indicates that
the EF -modified policy is still close to the optimal policy
learned by DQN.

Conclusion
In this paper, we proposed a methodology for the frequency
control problem, combining long-term value learning by
deep reinforcement learning and a global delivery volume
control technique termed Effective Factor. The experiment
results demonstrate that the proposed approach is able to im-
prove daily metrics effectively while reducing infrastructure
resource consumption in the notifications domain at the in-
dustrial scale. To our best knowledge, our work represents
the first industrial application of deep reinforcement learn-
ing in the frequency control problem at a scale of billions of
users.
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