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Abstract

An accurate and efficient forecasting system is imperative
to the prevention of emerging infectious diseases such as
COVID-19 in public health. This system requires accurate
transient modeling, lower computation cost, and fewer ob-
servation data. To tackle these three challenges, we propose
a novel deep learning approach using black-box knowledge
distillation for both accurate and efficient transmission dy-
namics prediction in a practical manner. First, we leverage
mixture models to develop an accurate, comprehensive, yet
impractical simulation system. Next, we use simulated obser-
vation sequences to query the simulation system to retrieve
simulated projection sequences as knowledge. Then, with the
obtained query data, sequence mixup is proposed to improve
query efficiency, increase knowledge diversity, and boost dis-
tillation model accuracy. Finally, we train a student deep
neural network with the retrieved and mixed observation-
projection sequences for practical use. The case study on
COVID-19 justifies that our approach accurately projects in-
fections with much lower computation cost when observation
data are limited.

Introduction
The spread of infectious diseases is a serious threat to public
health and may cause million deaths every year. To effec-
tively battle against infectious diseases, accurate modeling
on their transmission patterns is critical. This issue becomes
more pressing when the infectious disease, like COVID-19,
is unprecedented, transmission dynamics is complex, and
observation data are limited. Due to data limitation, we need
to solve this problem with the help of conventional physics-
based epidemiological models. However, it is still difficult to
accurately describe complex dynamics with a single model.

Mixture models are widely used to accurately solve com-
plex transient modeling problems. They can refine temporal
scale into several states with different onsets, model these
states separately, and then mix modeling results to repre-
sent complex dynamics. Although this refinement on tem-
poral scale more accurately depicts the variation in a physi-
cal system, the difficulty of calibrating a mixture model and
computational complexity can exponentially increase since
it can result in very large parameter space, i.e., curse of
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dimensionality. When prior knowledge about an infectious
disease, such as COVID-19, is limited, exhaustive search
in such large space is inevitable for accurate model calibra-
tion, which can easily render a mixture model impractical. In
reality, some modelers propose some assumptions to trun-
cate search space with coarse grid and trade for efficiency
and feasibility, but it can cause large uncertainty and model
degradation.

To address this problem, we formulate a new approach
with black-box knowledge distillation. This approach is de-
veloped based on three-fold objectives, including higher pre-
diction accuracy, lower modeling cost, and higher data effi-
ciency. To achieve higher prediction accuracy, we first lever-
age mixture models to create a comprehensive, accurate, but
probably impractical epidemic simulation system. This sys-
tem is viewed as a black-box teacher model which contains
sophisticated modeling knowledge. To reduce modeling cost
and make this system feasible, we employ knowledge dis-
tillation to transfer the accurate modeling knowledge from
this impractical black-box teacher model to a deep neural
network for practical use. To realize this knowledge trans-
fer, we collect a set of simulated observation sequences to
query the teacher model and acquire their corresponding
simulated projection sequences as knowledge. Particularly,
for improvement in model performance with limited data,
we propose sequence mixup to augment data pool, thus re-
ducing model queries, increasing sequence diversity, and
boosting modeling accuracy. With all retrieved and mixed
observation-projection sequence pairs, we train a student
deep neural network for infection prediction. This student
network can perform prediction as accurately as teacher
model, but save lots of computation cost, and require fewer
observation data.

To the best of our knowledge, we are the first to propose a
black-box knowledge distillation based framework to solve
epidemiological modeling by leveraging mixture models.
Besides this novelty, our work also includes the following
contributions: (1) the distilled student deep neural network
enables accurate model calibration and projection automat-
ically. (2) Sequence mixup is proposed to reduce teacher
model queries for higher efficiency, improve the coverage
of obtained data for better accuracy, and further enhance
knowledge transfer with fewer observation data. (3) We jus-
tify our approach by solving COVID-19 infection projection
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and it performs on par or even better than some state-of-
the-art methods, like CDC Ensemble, with adequate accu-
racy over the evaluation period. (4) Our approach provides a
general solution to render impractical physics-based models
feasible.

Related Work

Epidemiological Modeling

Epidemiological modeling has been extensively studied for
decades. It is focused on how to accurately quantify infec-
tious disease transmission dynamics. The proposed methods
can be classified into two main categories, classical physics-
based modeling and data-driven approach. For physics-
based modeling, compartmental modeling, like SEIR (Ker-
mack and McKendrick 1927), is well justified for prac-
tical projection. Different from physics-based modeling,
thanks to the improvement on data collection, data-driven
approaches have been developed based upon statistical mod-
eling on real observation data and widely used for trans-
mission dynamics projection, such as ARIMA(Benjamin,
Rigby, and Stasinopoulos 2003) and ARGO(Yang, Santil-
lana, and Kou 2015; Yang et al. 2017). With rapid advances
in artificial intelligence, deep learning based modeling as an
alternative is proposed to solve infection projection, espe-
cially for emergency pandemic like COVID-19 (Wu, Leung,
and Leung 2020; Hu et al. 2020; Yang et al. 2020; Fong
et al. 2020). However, these data-driven approaches can
suffer from observation data limitation. Recently, a hybrid
approach named DEFSI (Wang, Chen, and Marathe 2019)
adopts compartmental modeling to alleviate data limitation
problem in deep neural network training.

Knowledge Distillation

Knowledge distillation (Hinton, Vinyals, and Dean 2015) is
widely used to solve deep neural network compression prob-
lem. Conventional distillation process is carried out by train-
ing a smaller neural network called student model with class
probability, which is referred to as “dark knowledge”, to re-
tain the performance of original cumbersome ensemble of
models called teacher model. This approach can effectively
reduce model size, which makes complex models feasible
for real-world applications. Many complex applications in
computer vision or natural language processing have justi-
fied its merits for model size reduction. For example, Dis-
tilBERT (Sanh et al. 2019) successfully reduces the size of
original BERT model by 40% with maintaining accuracy;
TinyBERT (Jiao et al. 2019) leverages knowledge distilla-
tion to design a framework for the reduction of transformer-
based language model, which leads to the models with lower
time and space complexity, thus facilitating its application;
relational knowledge distillation (Park et al. 2019) further
optimizes distillation process and enables more productive
student model, which can even outperform teacher model.
However, this effective approach has not been applied to
solve complex epidemiological modeling, especially the in-
feasibility of mixture epidemiological models.

Simulation System

Distillation 
Loss

Teacher
Model

Student
Network

Input
Observation 
Sequences

(Direct Query + Sequence Mixup)
Output

Projection
Sequences

Figure 1: Modeling with black-box knowledge distillation.
Teacher model is an accurate but significantly complex com-
prehensive simulation system. Both observation and projec-
tion sequences are simulated results. Model query is opti-
mized by sequence mixup.

Mixup
Mixup is a simple yet effective approach to augment training
data and improve model performance (Zhang et al. 2017).
This method is proposed to improve the generalization of
deep neural network by enhancing coverage of data distri-
bution, especially when training data are limited. The main
idea is to incorporate convex combination into data synthe-
sis, which involves mixing features and mixing labels. It has
been widely used to address computer vision and natural lan-
guage processing problems, like Between-Class learning in
speech recognition (Tokozume, Ushiku, and Harada 2017)
and image classification(Tokozume, Ushiku, and Harada
2018), AutoAugment with learning strategy augmentation
for classification (Cubuk et al. 2018), and wordMixup or
senMixup with embedding mixup for sentence classifica-
tion (Guo, Mao, and Zhang 2019). More studies explore its
potential for data-efficient learning, such as active mixup
(Wang et al. 2020) and ranking distillation in (Laskar and
Kannala 2020). However, there is no work using mixup to
enhance epidemiological modeling efficacy and efficiency.

Methodology
Figure 1 shows an overview of our approach on epidemi-
ological modeling by black-box knowledge distillation. We
leverage mixture models to build a comprehensive simula-
tion system with accurate modeling knowledge yet signif-
icantly high complexity. Then, we use simulated observa-
tion sequences to query this system to retrieve simulated
projection sequences as knowledge. To improve query ef-
ficiency and enhance knowledge transfer, sequence mixup is
designed to further efficiently augment data pool. With re-
trieved and mixed observation-projection sequence pairs, a
deep neural network is trained to retain the modeling accu-
racy of the original impractical simulation system and pre-
pared for practical use.

Developing a Teacher Model
Many approaches can be used to create mixture models and
build a comprehensive simulation systemM. To ensure re-
liability, we select a widely accepted compartmental model
of SEIR as the modeling approach. In SEIR, people in the
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modeled society, aka host society, must be in one of the four
health states, i.e., susceptible, exposed, infectious, and re-
covered. The state transition starts from “susceptible”, and
then moves to “exposed”, then to “infectious”, and finally
reaches “recovered” state. Thus, the model is constrained
with the boundary condition of N = S + E + I + R, where
S,E, I , andR denote susceptible, exposed, infected, and re-
covered population, respectively, and N represents the pop-
ulation of the entire host society.

For accurate depiction of transient transmission dynam-
ics, we employ linear mixture model (Brauer 2017) to repre-
sent the heterogeneity of host society (Bansal, Grenfell, and
Meyers 2007). The host society N is divided into several
component host communities Ni with the linear combina-
tion in Equation 1, and modeling results from these commu-
nities will be mixed to represent the dynamics of entire host
society N . The division of host society is based on heuris-
tics, which depends on modeling resolution.

N =
n∑

i=0

Ni =
n∑

i=0

(Si + Ei + Ii +Ri) (1)

Within each community Ni, transmission dynamics can
be described by an ordinary differential equation (ODE) sys-
tem, as shown in Equation 2, across all compartments.

dSi

dt
= αNi − βSt

iI
t
i − µNiS

t
i

dEi

dt
= βSt

iI
t
i − (σ + µ)Et

i

dIi
dt

= σEt
i − (γ + µ)Iti

dRi

dt
= γIti − µRt

i

(2)

where St
i , Et

i , Iti , and Rt
i denote susceptible, exposed, in-

fected, and recovered population, respectively, at time t. β,
σ, and γ denote infectious, latent, and recovery rate over
the entire incidence, respectively. α and µ are referred to as
natural birth and death rates during this period, respectively,
which are assumed to be zero in this study.

SEIR modeling is a typical boundary value problem (Far-
low 1993), the solution of which relies on boundary condi-
tion (BC), initial condition (IC), and ODEs. In this study,
for each component host community, constant BC is as-
signed by the total population Ni due to no vital dynam-
ics, IC is determined by the compartment state information
{S0

i , E
0
i , I

0
i , R

0
i } at time step t = 0, and ODEs are specified

by the dynamics coefficients {β, σ, γ}. Conventional numer-
ical modeling requires model calibration, , which adjusts pa-
rameters to obtain agreement between real observation data
and modeled results, using grid search for an optimal com-
bination of BC, IC, and ODEs ({BC, IC, ODEs}) within
constraints in search space. If the search space for {BC, IC,
ODEs} is larger and fine-grained, the calibration results are
better fit to the real observation data and simulated projected
results are more reliable. Therefore, we construct a compre-
hensive simulation system with an ensemble of simulation
scenarios from large and fine search space, which enables
accurate model calibration and projection.

However, the complexity of this simulation ensemble sys-
tem is very time-consuming for grid search due to curse of
dimensionality. For example, suppose we have just 2 op-
tions for BC, IC, and ODEs (the real problems require much
more). For each component host community, there are 8 sim-
ulation scenarios. However, if we have 10 component com-
munities, the ensemble for the entire society N will reach
810 simulation scenarios. It is infeasible to find an opti-
mal solution with random grid search. Therefore, we con-
duct knowledge distillation to distill this ensemble simula-
tion system into a deep neural network for practical use.

Querying the Teacher Model
Conventional knowledge distillation is carried out by query-
ing the teacher model to obtain prediction probabilities that
are referred to as “knowledge”. In our problem, the “knowl-
edge” are simulated projection sequences from the simula-
tion system since they contain the features of modeling pro-
cess. To facilitate acquiring such kind of modeling “knowl-
edge”, we conduct model querying as follows. First, we pre-
pare a simulated observation sequence over the calibration
period with a {BC, IC, ODEs} for each host community.
Each {BC, IC, ODEs} is used as a “key” to query teacher
model. Then, the teacher model will use the “key” to return
a query answer with a simulated sequence over the calibra-
tion and projection period, i.e., a projection sequence. With
more queries, more projection sequences are obtained and
more accurate modeling knowledge is acquired.

Sequence Mixup
To ensure adequate knowledge, distillation usually requires
lots of training data from many model queries. However, too
many queries can be time-consuming, and more importantly,
the simulated observation sequences are still too limited to
acquire diverse knowledge. For improvement in distillation
efficacy and data diversity, we employ sequence mixup to
reduce the number of queries and enlarge knowledge cover-
age.

x̂ = ω1x1 + ω2x2 + ...+ ωnxn

ŷ = ω1y1 + ω2y2 + ...+ ωnyn
(3)

Our sequence mixup is developed with convex combina-
tions of multiple observation sequences xi and projection
sequences yi with mix rates ωi, where Σωi = 1. Equation
3 presents this mixup process which mixes observation se-
quences x and projection sequences y in the same manner.

St+1 = St +
dSt

dt
=

n∑
i=1

ωiS
t
i +

d
∑n

i=1 ωiS
t
i

dt

=
n∑

i=1

ωiS
t
i +

n∑
i=1

dωiS
t
i

dt
=

n∑
i=1

ωiS
t
i +

dωiS
t
i

dt

=

n∑
i=1

ωiS
t+1
i

(4)

The mixup projection sequence ŷ in Equation 3 uses the
same coefficients ω1, ω2, ..., ωn as in x̂ and it can be briefly
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Figure 2: Weekly new infection cases over the calibration (04/06-08/23) and projection (08/24-09/13) periods by teacher model,
student network, and coarse search.

proved as follows. Suppose x̂ denotes St =
∑n

i=1 ωiS
t
i at

the current observation time and ŷ denotes St+1 at the next
projection time. Given the linearity of differentiation, this
mixup process St+1 =

∑n
i=1 ωiS

t+1
i is justified in Equation

4. Similar proof can be completed for E, I , and R.
These mixed sequences as an alternative to query knowl-

edge efficiently augment training data and enhance the
knowledge transfer from teacher model. Thus, all retrieved
and mixed sequences construct a training set (X,Y ).

Training a Student Deep Neural Network
With the acquired observation-projection sequence pairs
(X,Y ), a deep neural network is trained to distill the mod-
eling knowledge within the comprehensive simulation sys-
tem. The conventional distillation process is carried out
by minimization on the distillation loss function Ldis =
D1(ytruen , S(xn))+D2(T (xn), S(xn)), where T (xn) is the
output of data xn from teacher model T , S(xn) is the out-
put of data xn from student network S, D1 is the supervised
loss for supervised learning with data label ytruen , and D2 is
the imitation loss for model output imitation. In our prob-
lem, there is no knowledge about the true label ytruen for xn,
and thus, the distillation loss is modified to the imitation loss
only, as shown in Equation 5. We select mean squared error
loss as distillation loss function.

Ldis = D2(T (xn), S(xn)) (5)

The proposed black-box knowledge distillation is a gen-
eral approach that can be applied to different student net-
works. In the problem of COVID-19, we use multilayer per-
ceptron (MLP) which is detailed in the case study.

Overall Algorithm
Algorithm 1 presents the overall procedure of our pro-
posed black-box knowledge distillation based epidemio-
logical modeling. Beginning with a modeling approach, a
comprehensive epidemic simulation system is built as a
teacher model MT . We then pick a few simulated obser-
vation sequences x to query the teacher model and retrieve
their simulated projection sequences y. With obtained se-
quences (x, y), we construct a large observation-projection
pool (X,Y ) using sequence mixup. Finally, we train a stu-
dent deep neural networkMS with (X,Y ).

Algorithm 1 Epidemiological Modeling with Black-box
Knowledge Distillation

INPUT: A modeling approach F such as mixture SEIR.
INPUT: A set of observation sequences Xobs = {xi}ni=1.
INPUT: Hyper-parameters (mixup rate, learning rate etc.)
OUTPUT: A student deep neural networkMS

1: Develop a comprehensive simulation systemMT based
upon F with a set of conditions {BC, IC, ODEs}s

2: With all observation sequences in Xobs, query sim-
ulation system MT , retrieve projection sequences
Yquery = {yi}ni=1, and form an observation-projection
pool (Xobs, Yquery).

3: Construct a mixed sequence pool (Xmix, Ymix) =
{(x̂, ŷ) : (x̂, ŷ) ∈ (

∑n
i=1 ωixi,

∑n
i=1 ωiyi)} with query

results (Xobs, Yquery), where ω is heuristically chosen.
4: Train a student deep neural networkMS with (X,Y ) =

(Xobs, Yquery) ∪ (Xmix, Ymix) to minimize distillation
loss Ldis.

COVID-19 Case Study
Experiment Setting
Data. We evaluate our approach on the open COVID-19
datasets provided by Johns Hopkins University (Dong, Du,
and Gardner 2020). In this dataset, our experiments are fo-
cused on daily infection case increase. With these reported
data, we derive active infection cases based on 7-day trans-
mission duration (Thevarajan et al. 2020), as the data do not
explicitly report the number of recovered patients. The ob-
servation period starts from 04/06/2020 to 08/23/2020 and
the evaluation period is from 08/24/2020 to 09/13/2020.

Black-box Teacher Model. A black-box teacher model is
built with aforementioned mixture SEIR. The mixture model
consists of 10 compartment host communities. Each com-
partment host community is simulated with 10 choices for
Ni to specify constant BC, 2 choices for {S0

i , E
0
i , I

0
i , R

0
i } to

specify IC, and 20 choices for each coefficient in {β, σ, γ}
to specify ODEs. Such choices of parameters are based on
heuristics. Most studies on COVID-19 using SEIR model
give a wide range of parameter choices (Liu et al. 2020).
We refine them to more reliable ranges. With the refined pa-
rameter choices, this simulation system contains 16000010
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Metric Model Calibration Projection
US Mexico Philippines Brazil US Mexico Philippines Brazil

MAPE
Teacher 0.0363 0.1217 0.3197 0.0879 0.0352 0.0369 0.1030 0.1522
Student 0.0695 0.1164 0.3472 0.0792 0.0433 0.0527 0.0984 0.1331
Coarse 0.0843 0.2269 1.3159 0.1438 0.0727 0.0910 0.1314 0.2923
Teacher 0.669 0.183 0.101 0.790 0.209 0.028 0.048 0.703

RMSE Student 1.321 0.163 0.163 0.857 0.218 0.041 0.041 0.593
(105) Coarse 1.426 0.333 0.229 0.985 0.399 0.063 0.059 1.215

Table 1: Error assessment of model calibration (04/06 - 08/23) and projection (08/24 - 09/13).

scenarios for the entire society N , which is impractical. To
facilitate distillation assessment, we conduct random sam-
pling to reduce it to 107 scenarios as an approximate version
of teacher model to the simulation system for comparative
study. The teacher model generates a simulated projection
sequence by minimizing the mean squared error between
real observation and the simulation over the calibration pe-
riod, which is similar to exhaustive search.

Query Sequences and Mixup. We randomly pick 1000
{BC, IC, ODEs}s to prepare simulated observation se-
quences which are used to query teacher system. Note that,
compared to the size of the ensemble, this number is so lim-
ited that we acquire little knowledge about simulation sys-
tem with selected sequences, which still follows black-box
teacher model setting. Given 1000 query results, we con-
struct a large pool with 100K sequences by sequence mixup,
where ω is set heuristically.

Student Deep Neural Network Training. Our student
network architecture is an MLP which has 3 hidden layers
with 80 neurons each. The batch size is 128 and learning
rate is set to 0.1. Adam optimizer is chosen. Weight decay is
specified to 1e-5. The total epoch is set to 300 and learning
rate is reduced by 90% after every 100 epochs. We select 1K
sequences from the constructed sample pool as a training set
for efficient training.

Studied Cases. We implement our black-box distillation
framework to distill comprehensive infection modeling sys-
tem for US, Mexico, Philippines, and Brazil. The infection
patterns of these countries are representative of complex
dynamics which involves multiple peaks and complicates
model calibration. To achieve an adequate teacher model
on each studied country, we heuristically specify the search
space boundaries for {BC, IC, ODEs}s with the informa-
tion of national population, reported positive cases on March
30th (a week before April 6th), and outbreak severity for
each country.

Evaluation Metric. We evaluate infection case model-
ing performance on both accuracy and efficiency. For ac-
curacy, model calibration and projection are assessed. The
performance is quantified by mean absolute percentage er-
ror, MAPE = 1

n

∑n
i=1 |

yo
i −ym

i

yo
i
|, and root mean square er-

ror, RMSE =
√

1
n

∑n
i=1(yoi − ymi )2, where yo is the real

observation sequence, ym is the modeled sequence, and n
is the total number of sequences. MAPE and RMSE are

two widely adopted metrics to evaluate regression models.
While lower MAPE suggests that the general trend is better
captured, higher error can occur at larger observation data.
RMSE is a better indicator for large values since it offers
higher penalty for these errors. Therefore, we use both met-
rics for accuracy evaluation.

As to computation efficiency, we evaluate model com-
plexity with required simulation scenarios and total time
cost for each projection query. For student network, the net-
work training cost is included in each query process al-
though network retraining is not always necessary.

Competing Methods. First, we compare our approach
with the approximate teacher model and coarse search to ex-
amine accuracy and efficiency. Coarse search is developed
upon coarse grid search space for mixture models. We re-
duce the number of compartment communities to 5, the op-
tions for BC to 5, and the choices for each ODE coefficient
to 10, which could be taken as a reduced teacher model,
but still with the complexity of 100005. Similar to teacher
model, for practical performance evaluation, we reduce it to
105 scenarios with random sampling, which ensures its simi-
lar data complexity to student network. In the following sec-
tions, approximate teacher model and coarse grid search are
referred to as teacher model and coarse search, respectively.
Next, we compare our student network with 7 state-of-the-
art forecasting models reported from CDC (Bracher et al.
2020). These models are developed with machine learning
based methods, like UM and UCLA-SuEIR, statistical meth-
ods, like DDS, physics-based model, like JHU-IDD and
Columbia, and ensemble approaches, like UVA and CDC
Ensemble (Ray et al. 2020).

Results
Accuracy. Our calibration and projection results are re-
ported with weekly increase cases in Figure 2. Student
network is comparable to teacher model and significantly
outperforms coarse search. These performance differences
are quantified with MAPE and RMSE in Table 1. It is
shown that, compared to the teacher model, student network
achieves similarly low or even lower MAPE and RMSE,
over the calibration or projection periods. This observation
results from the approximation of teacher model and se-
quence mixup for student network training. Coarse search
yields highest errors due to limited search space.

We compare our student network with 7 state-of-the-art
models in Table 2, which are based on the reported data from
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Period Model
(from 08/23) CDC Ensemble UM DDS UVA UCLA JHU Columbia Ours (Student)
1 week ahead 0.0608 0.3866 0.0417 0.0698 0.0367 0.0737 0.0456 0.0301
2 week ahead 0.1108 0.0386 0.0228 0.0772 0.0889 0.1165 0.0250 0.0623
3 week ahead 0.0581 0.0549 0.0819 0.2724 0.0077 0.2572 0.2083 0.0398

Table 2: MAPE comparison of state-of-the-art models and our method on US weekly infection case increase projection between
08/24 and 09/13. The results of other models are collected from CDC, which are reported by COVID-19 Forecast Hub.

CDC (Bracher et al. 2020). Our model consistently outper-
forms CDC Ensemble, which incorporates all reported state-
of-the-art models, with 30%−50% MAPE reduction over
this period. In particular, our model yields more accurate
1 week ahead prediction and more consistent performance
over three weeks compared to other models.

Efficiency. From Table 3, student network saves both sim-
ulations and time cost by orders of magnitude. Student net-
work and coarse search are on par in total time cost, while
the network training takes approximately 300 CPU seconds
in our study. This performance gain results from the opti-
mization with sequence mixup and lightweight network de-
sign. It justifies that our approach significantly improves
modeling efficiency and can facilitate the application of
complex and cumbersome epidemiological models.

Significance of Mixup. Sequence mixup, as an efficient
method for data augmentation, is very important to enhance
knowledge transfer in our approach. Compared to coarse
search and teacher model, our student network can learn
more scenarios out of search space due to sequence mixup,
and this knowledge can overcome the limit from search
space, thus even improving calibration and projection accu-
racy. To justify its importance, we conduct experiments with
100K, 50K, and 25K mixed sequences from 1000 retrieved
observation-projection sequences and evaluate their perfor-
mance difference in calibration and projection for US. From
Table 4, the reduction in mixed sequences causes model
degradation. The degradation becomes worse in the projec-
tion period due to calibration error propagation. Thus, se-
quence mixup is critical to accurate projection.

Discussion. First, a comprehensive and accurate modeling
system is critical in our framework. When this comprehen-
sive teacher model is more complex and accurate, our stu-
dent network can yield more accurate results. Next, student
network can interpolate information in latent space which
can resolve space discretization problem in grid search. The
space of grid search is often too sparse to find an opti-
mal solution. Therefore, dense search space is imperative,

Complete Approximate Student Coarse
Teacher Teacher Network Search

Simulations 16000010 107 103 105

Time(s) N/A ∼3×104 ∼ 400 ∼300

Table 3: Model complexity measured by the required simu-
lations and the CPU time cost for one projection query.

Metric 100K 50K 25K

Calibration MAPE 0.0695 0.0987 0.1459
RMSE(105) 1.321 1.831 2.910

Projection MAPE 0.0433 0.1861 0.2813
RMSE(105) 0.218 0.985 1.367

Table 4: Calibration and projection errors from student net-
work for US with 100K, 50K, and 25K mixed sequences.

but its cost will exponentially increase. This can be allevi-
ated by our proposed knowledge distillation. In addition, se-
quence mixup improves training data coverage and boosts
model distillation, which helps student network even out-
perform teacher model. It implies that our proposed knowl-
edge distillation scheme has potential to improve teacher
model. Also, if a well-trained student network is obtained,
the model could be reused many times, even when new data
are included. In contrast, conventional random grid search,
like teacher model or coarse search, has to be reset and query
all entries again to retrieve projection solutions. This implies
student network can save extra query cost.

Conclusion
We propose an innovative accurate modeling approach
which leverages mixture models to ensure high accuracy and
employs black-box knowledge distillation to reduce com-
plexity and improve accuracy. It consists of teacher model
development, model querying, sequence mixup, and student
network training. The developed teacher model is a com-
prehensive simulation system which can accurately model
challenged transient dynamics but is impractical. Then, we
prepare simulated observation sequences to query this sim-
ulation system and retrieve simulated projection sequences
as knowledge for distillation. In particular, to save number
of queries and enhance knowledge transfer, sequence mixup
is designed and effectively augments training data. With re-
trieved and mixed observation-projection sequences, a stu-
dent deep neural network is trained as a distilled model for
practical use. Our COVID-19 case study on US, Mexico,
Philippines, and Brazil justifies that this approach brings in
high accuracy but lower complexity. Also, our approach out-
performs some state-of-the-art methods, like CDC Ensem-
ble, over the studied period. In future, this work will be ex-
tended and applied to more epidemiological studies.
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