
Representing the Unification of
Text Featurization using a Context-Free Grammar

Doruk Kilitçioğlu and Serdar Kadıoğlu
Artificial Intelligence Center of Excellence

Fidelity Investments, Boston, USA
{firstname.lastname@fmr.com}

Abstract
We propose a novel context-free grammar to represent text
embeddings in conjunction with their various transforma-
tions. We show how this grammar can serve as a unification
layer on top of different featurization techniques, and their
hybridization thereof. The approach is embodied in an open-
source library, called TEXTWISER, with a high-level user
interface to serve researchers and practitioners. The goal of
TEXTWISER is to enable rapid experimentation with various
featurization methods and to serve as a building block within
AI applications consuming unstructured data. We highlight
several key benefits that are desirable especially in indus-
trial settings where rapid experimentation, reusability, repro-
ducibility, and time to market are of great interest. Finally,
we showcase a deployed service powered by TEXTWISER as
a proof-of-concept enterprise application.

Introduction
Unstructured text is a common source of input data for
many modern machine learning applications from finance to
healthcare and e-commerce. Given the vast amounts of un-
structured data, applications turn to various text featurization
techniques from Natural Language Processing (NLP). How-
ever, there exists no silver bullet, and it typically remains
unknown which featurization technique, or which combi-
nations, would provide the best performance for the down-
stream application at hand. Depending on the specific task,
which might range from ranking to classification and simi-
larity matching to personalization among many others, prac-
titioners turn to experimentation in the pursuit of finding the
best approach.

Consider, for example, a scenario in which we would like
to find the pairwise similarities between the contents of a set
of articles. A reasonable and commonly applied approach
would be to select a distance measure and then compute
distances among articles based on their text features. This
leaves us with some algorithmic choices. On the one hand,
we can start with relatively simple counting and frequency-
based approach such as Term Frequency-Inverse Document
Frequency (TF-IDF)(Jones 1972). On the other hand, we can
employ drastically different techniques based on word em-
beddings such as Word2Vec (Mikolov et al. 2013), Doc2Vec

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Le and Mikolov 2014), or even more sophisticated language
models such as BERT (Devlin et al. 2018), or one of its
many of the variants, e.g., RoBERTa (Liu et al. 2019), Dis-
tilBERT (Sanh et al. 2019), ALBERT (Lan et al. 2019) etc.
When faced with this challenge, data scientists have to ex-
periment with many techniques and select the best perform-
ing one while also considering other factors such as the in-
ference time, simplicity, maintainability, availability of spe-
cific hardware, deployment constraints, and reproducibility.
The task becomes even more involved when we consider not
only the different featurization methods but their combina-
tion thereof. For instance, we could represent each article
using a concatenation of two or more methods, or their trans-
formation using dimensionality reduction or decomposition
techniques such as non-negative matrix factorization (Lee
and Seung 2001) and singular value decomposition (Golub
and Reinsch 1971).

Recent developments in the open-source NLP commu-
nity provided practitioners with a rich set of tools and li-
braries to combat this challenge. Popular examples include
NLTK (Loper and Bird 2002), GENSIM (Řehůřek and So-
jka 2010), and more recently SPACY (Honnibal and Montani
2017), ALLENNLP (Gardner et al. 2018), FLAIR (Akbik,
Blythe, and Vollgraf 2018) and HUGGINGFACE TRANS-
FORMERS (Wolf et al. 2019). Thankfully, most of these li-
braries also offer pre-trained models to speed up application
development. Still, the availability of various techniques in
standalone, isolated libraries does not provide an immediate
solution for our scenario to find the best content similarity
approach. The task becomes working with many different
tools and building a custom layer on top to find the best ap-
proach. When the scenario changes in a new use case, we
have to re-do this work from scratch. Even worse, this is an
effort that every practitioner has to repeat for each use case.
Notice also that there is no guarantee of reproducibility be-
tween two different implementations and experimentations.
Moreover, as one of the fastest moving research areas, with
new NLP methods and tools being introduced on a rapid ba-
sis, data scientists and non-experts need to get familiar with
new technology and extend their experimentation setup with
another tool. This is exactly the problem we want to solve in
this paper to improve applied AI innovation and deployment
of AI systems.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15439

With this goal in mind, we built TEXTWISER1, an open-
source Python library to provide a unified framework for text
featurization based on a rich set of methods taking advantage
of pre-trained models. In its simplest form, it is a wrapper
around other state-of-the-art NLP libraries such as Flair (Ak-
bik, Blythe, and Vollgraf 2018) and gensim (Řehůřek and
Sojka 2010), but its overall contributions go beyond that:
• Grammar of Embeddings: We introduce a context-

free grammar to represent the unification of text featur-
ization. This allows designing embeddings from well-
defined components systematically and can even form ar-
bitrarily complex ones.

• Rich Set of Embeddings: A wide range of embeddings
and transformations to choose from.

• Fine-Tuning: The implementation supports PyTorch
backend natively, and as such, it retains the ability to
fine-tune featurization for downstream tasks, a highly-
desirable feature for niche performance. When the result-
ing fine-tunable embeddings are used subsequent training
steps, the featurization can be optimized further for spe-
cific applications.

• Parameter Optimization: The library is interopera-
ble with the standard scikit-learn pipelines for hyper-
parameter tuning and rapid experimentation. All under-
lying model parameters are exposed to the user.

• GPU Native: The library is built with modern architec-
ture and GPUs in mind. If it detects available hardware,
the relevant models are automatically placed on the GPU.

• Reproducibility: Equipped with the formalism of a well-
defined grammar, featurization methods are transferable
using human-readable schema throughout the application
life-cycle from the training phase to model deployment
and inference.
In the remainder of this paper, we showcase the high-

level design of TEXTWISER with several examples and pro-
vide details of the functionality. Finally, we demonstrate an
proof-of-concept application powered by TEXTWISER and
deployed as a service to facilitate the modeling and deploy-
ment of AI systems.

High-Level Usage Examples
Let us start by presenting a simple usage example to make
the idea behind TEXTWISER more concrete.

Unstructured Text Data
documents = ["Some document",

"More text"]

Example Embedding - I: Counting based
model = TextWiser(Embedding.TfIdf())

Example Embedding - II: Doc vector
model = TextWiser(Embedding.Doc2Vec())

Text Featurization
features = model.fit_transform(documents)

1https://github.com/fidelity/textwiser

In this example, given a set of text documents, TEX-
TWISER provides a high-level interface to access embed-
dings in a unified manner. The first example is the simple
counting/frequency-based approach (Jones 1972), and the
second example is the document embeddings from (Le and
Mikolov 2014). Notice how both embeddings share a com-
mon training and transformation step. Under the hood, each
approach performs the necessary training encapsulated in
the fit transform method. This method should be familiar
to those with a general background in data science and the
well-known Scikit-learn library (Pedregosa et al. 2011). The
training operation might be built-in, delegated to another li-
brary, or come from a pre-trained model. While power users
might want to explore some of these configurable parame-
ters, it is not required for the out-of-box usage pattern show-
cased in this example.

Transformation Example
In practice, it is common to apply transformation and di-
mensionality reduction techniques on top of text featuriza-
tion. This helps create compact representations to be con-
sumed by machine learning models. Similarly, word vec-
tor embeddings need pooling operation to create document-
level features. TEXTWISER captures the semantics of these
operations as a chain of one or more transformation steps, as
demonstrated in the next example:

Embeddings and Transformations
tf_idf = Embedding.TfIdf()
doc2vec = Embedding.Doc2Vec()
lda = Transformation.LDA(n_components=30)
svd = Transformation.SVD(n_components=10)

Example - I: Single Transformation
model = TextWiser(tf_idf, lda)

Example - II: Chain of Transformations
model = TextWiser(doc2vec, [lda, svd])

The first case applies Latent Dirichlet Allocation (Blei,
Ng, and Jordan 2003), a useful technique for topic modeling,
on top of the TF-IDF features, while the second case trans-
forms the representation further using singular-value decom-
position. Notice how different embeddings and transforma-
tions are interchangeable with each other leading to various
combinations.

A Context-Free Grammar of Embeddings
As shown in the usage examples, the main philosophy be-
hind TEXTWISER can be captured neatly with the following
formula:

TEXTWISER = EMBEDDING + TRANSFORMATION(S)

The formula itself raises an important compatibility ques-
tion: which combinations of embeddings and transforma-
tions lead to valid featurization techniques? For instance, we
cannot apply a maximum pooling transformation unless the
embedding space creates word vectors. Our work’s unique
contribution is a context-free grammar (Chomsky 1956) that

15440

Algorithm 1 Text Embedding Unification Language of
TEXTWISER Interface
〈start〉 ::= 〈embed like〉 | 〈merge〉

〈embed like〉 ::= 〈embed option〉
| [〈embed option〉 , dict]

〈embed option〉 ::= 〈bow〉 | 〈doc2vec〉 | 〈tfidf 〉 | 〈use〉

〈merge〉 ::= {〈transform〉 : [〈start〉 , 〈transform list〉]}
| {〈transform〉 : [〈word like〉 , 〈pool trfm list〉]}
| {〈concatenation〉 : [〈concat list〉] }

〈transform list〉 ::= 〈transform like〉
| 〈transform like〉 , 〈transform list〉

〈transform like〉 ::= 〈transform option〉
| [〈transform option〉 , dict]

〈transform option〉 ::= 〈lda〉 | 〈nmf 〉 | 〈svd〉 | 〈umap〉

〈word like〉 ::= 〈word〉 | [〈word〉 , dict]
| word option | [word option , dict]

〈word option〉 ::= (see Table 1 word embeddings†)

〈pool trfm list〉 ::= 〈pool like〉
| 〈pool like〉 , 〈transform list〉
| 〈transform list〉 , 〈pool like〉
| 〈transform list〉 , 〈pool like〉 , 〈transform list〉

〈pool like〉 ::= 〈pool〉 | [〈pool〉 , dict]

〈concat list〉 ::= 〈start〉 | 〈start〉 , 〈concat list〉

〈foo-bar〉 ::= ‘foo-bar’ # Omitting trivial terminals

defines the language of valid featurization techniques sys-
tematically. The idea is to treat each instantiation of embed-
ding and transformation combinations as a sentence subject
to language membership against a grammar.

More formally, Algorithm 1 presents the specification of
our context-free grammar. We omit trivial string conversions
from non-terminal to terminal symbols, but the complete
language can be found in our repository. We also use the
short-hand dict to mean a valid dictionary with key-value
pairs for brevity. This dictionary passes hyper-parameter ar-
guments to underlying implementations. To the best of our
knowledge, the proposed grammar here can accommodate
most, if not all, NLP featurization techniques that exist in
the state-of-the-art.

TEXTWISER internalizes this grammar through a partic-
ular embedding, called compound embedding. The com-
pound embedding operates on grammar-based specifications
given as a JSON schema. In fact, there exists a compound
embedding corresponding to any TEXTWISER instantiation
including our previous usage examples (since the grammar
defines the entire language).

At the heart of our grammar specification lies two main
production rules, as part of the 〈merge〉 non-terminal sym-
bol in Algorithm 1:

Transform Operation: This production rule defines a list of
operations, the first of which should be an Embedding (or a
valid compound embedding), while the rest should be Trans-
formation(s). This rule is a direct translation of our formula.
Internally, embeddings have access to raw text, turn them
into vector representations, and then Transformations oper-
ate on these vectors. In PyTorch (Paszke et al. 2019) termi-
nology, this is equivalent to using nn.Sequential.

Concatenation Operation: This operator defines a concate-
nation of multiple embeddings (or, as before, valid com-
pound embeddings). The concatenation can be done both
at word and sentence level. In PyTorch terminology, this is
equivalent to using torch.cat.

Grammar-based Compound Embedding
In theory, grammar representation can form arbitrarily com-
plex combinations of embeddings and transformations. In
a later section, we discuss how to exploit this property to
design non-trivial combinations within a process similar to
neural architecture search (Stanley and Miikkulainen 2002),
or, more generally, instance-specific algorithm configura-
tion (Kadioglu et al. 2010). In practice, the compound em-
bedding consumes a JSON schema as follows:

Grammar-based Schema
schema = {"transform": [{"concat": [

{"transform": ["word2vec", "pool"]},
{"transform": ["elmo",

["pool",
{"pool_option": "mean"}]]},

{"transform": ["tfidf", "nmf"]}]
}, "svd"]}

Compound Embedding
model=TextWiser(

Embedding.Compound(schema))

This example takes advantage of three different embed-
dings: i) Word2Vec embedding with the default max-pooling
at the document level, ELMo (Peters et al. 2018) embedding
with mean pooling, and TF-IDF embedding with an NMF
transformation. These three embeddings are concatenated,
and then the resulting vector is decomposed using SVD.

Rich Set of Embeddings and Transformations
Table 1 lists the available Embeddings in TEXTWISER. The
Pre-Trained column indicates whether there exists a pre-
trained model that can be leveraged, and the Fine-Tuning
column shows whether the Embedding can be fine-tuned for
downstream tasks. We elaborate on fine-tuning in the next
section. Similarly, Table 2 lists the available Transforma-
tions. The Grad column shows whether a Transformation
can propagate gradients back, and the Fine-Tuning column
shows whether the Transformation itself is fine-tunable. In-
terestingly, note that a Transformation such as pooling can

15441

Embeddings Pre-Trained Fine-Tuning
Bag of Words (BoW) 7 7

TF-IDF 7 7

Doc2Vec 7 7

Universal Sentence Encoder 3 7

Word2Vec† 3 3

Character† 7 3

BytePair† 3 3

ELMo† 3 7

Flair† 3 7

BERT† 3 3

OpenAI GPT† 3 3

OpenAI GPT-2† 3 3

TransformerXL† 3 3

XLNet† 3 3

XLM† 3 3

RoBERTa† 3 3

DistilBERT† 3 3

CTRL† 3 3

ALBERT† 3 3

T5† 3 3

XLM-RoBERTa† 3 3

BART† 3 3

ELECTRA† 3 3

DialoGPT† 3 3

Longformer† 3 3

Table 1: Available Embeddings in TEXTWISER with the ex-
istence of pre-trained models and the ability for fine-tuning.
The symbol † denotes word embeddings.

propagate gradients back without being fine-tunable as it
does not have any parameters to tune.

Under the hood, the library integrates several other state-
of-the-art NLP libraries to make Embeddings and Transfor-
mations available to the end-user in a seamless fashion. The
libraries integrated in TEXTWISER include, but are not lim-
ited to, gensim (Řehůřek and Sojka 2010), AllenNLP (Gard-
ner et al. 2018), Scikit-learn (Pedregosa et al. 2011), Flair
(Akbik, Blythe, and Vollgraf 2018) and the HuggingFace
Transformers (Wolf et al. 2019) library. We are indebted to
the contributions of these powerful tools to the community.

Overall, this yields to more than 25 embeddings (with
over 100 pre-trained models), accessible to the end-user with
a single parameter change along with many complex com-
binations. We hope that this will serve as an accelerator to
innovative AI applications using unstructured text.

Fine Tuning Downstream Applications
Text featurization can be treated as a separate step that pro-
vides input to machine learning applications. For example,
we can featurize a set of articles and then build a person-
alization model to map this representation to historical en-
gagement data based on user responses. We can then use the
trained model to make personalized recommendations for

Transformations Grad Fine-Tuning
LDA: Latent Dirichlet Allocation 7 7

NMF: Non-negative Matrix
Factorization

7 7

Pooling Word Vectors
(first, last, min, max, mean)

3 7

SVD: Singular Value Decomposition 3 3

UMAP: Uniform Manifold
Approximation and Projection

7 7

Table 2: Available Transformations in TEXTWISER with the
ability to propagate gradients and fine-tuning.

new users when selecting the best content to present. No-
tice that, in this approach, there are two disjoint learning
steps; the learning of the featurization purely from unstruc-
tured data and the learning of the response behavior from the
structured engagement data.

Performance can be improved by combining these two
learning steps in joint optimization. This is shown to work
well by Transfer Learning approaches, which enables start-
ing from pre-trained language models and then fine-tuning
them on specific applications (Ruder et al. 2019). Some of
the libraries TEXTWISER relies on, such as the Hugging-
Face Transformers (Wolf et al. 2019), provide their pre-
trained models as PyTorch models that can be further trained
or fine-tuned. Along the same lines, TEXTWISER retains
this ability to fine-tune embeddings and even enables fine-
tuning some pre-trained embeddings that cannot be fine-
tuned within the original library, e.g., word embeddings in
Flair (Akbik, Blythe, and Vollgraf 2018)). When resulting
TEXTWISER features are used in subsequent training loops
in downstream tasks, the back-propagation algorithm can
update the featurization layers for these embeddings.

In principle, whether an instantiation is fine-tuneable
depends on the specific Embedding and Transformation.
Any pre-trained word2vec embedding and any pre-trained
transformer-based embedding is fine-tunable. Likewise, any
featurization that ends with an SVD transformation becomes
fine-tunable as the SVD transformation itself is fine-tunable.
This is true even if the embedding used before the SVD
transformation is not inherently fine-tunable. For example,
the TF-IDF + SVD combination becomes fine-tunable de-
spite the static count-based vectors. Conversely, the UMAP
(McInnes, Healy, and Melville 2018) transformation opti-
mizes a particular objective function outside the underlying
computation graph, which invalidates fine-tuning.

Hyper-Parameter Optimization
To find the best hyper-parameters for a given task, random
search and grid search are two popular techniques together
with Bayesian-based optimization techniques (Bergstra,
Yamins, and Cox 2013). TEXTWISER is designed with rapid
prototyping and interoperability in mind. Not only all under-
lying model parameters are exposed to the user, but integra-
tion with the Scikit-learn Pipelines is also supported. TEX-

15442

TWISER instantiations fully cooperate with model selection
methods such as RandomizedSearch and GridSearch.

We can even go one step further and treat all text fea-
turization techniques as hyper-parameters. For example, in
a classification scenario, we can consider multiple instanti-
ations, each with multiple parameter distributions, chained
with a set of classifier models, each with their model pa-
rameters. All of these can interoperate within a Scikit-
learn pipeline to optimize a selected metric, e.g., F1 score,
over the training and test set. We provide a detailed hyper-
parameter tuning notebook example in the repository.

Automatically Building Embeddings From
Components

In the previous two sections, we described how to tune
hyper-parameters of different instantiations with and with-
out fine-tuning. Notice that there is still a cognitive step in-
volved: a model designer must specify which instantiations
to tune for. Given our grammar specification that implicitly
defines all possible instantiations, it is possible to alleviate
the design step from humans by automatically building em-
beddings from components. A naı̈ve approach would be to
brute-force all possible combinations and perform language
membership with a parser, e.g., the CYK parser (Cocke and
Schwartz 1970), to eliminate invalid strings and generate
candidate designs. Taking this a step further, we can em-
ploy a reasoning based approach, such as grammar con-
straints (Sellmann 2006; Kadioglu and Sellmann 2008) to
generate only the valid embeddings within a finite length of
strings. Constraint-based reasoning help incorporate other
preferences too; e.g., we can restrict the cardinality of an
SVD decomposition in the entire string representation to a
fixed value, or even a range, and seek at least one word em-
bedding in the compound. The intersection of NLP and Al-
gorithm Configuration is one of our active research direc-
tions.

Reproducibility
One of the major hurdles faced in ML research and produc-
tionization is reproducibility. Specifically, in industrial set-
tings, the ability to re-trace the exact decision-making pro-
cess is not only desirable, e.g., for debugging purposes, but
also in part required by law for trusted decision making.

The formalism provided by our unification grammar,
which is captured by a simple JSON schema in the com-
pound embedding, serves as the contract behind the spe-
cific featurization technique. Granted the same library ver-
sion and the seed, the grammar representation guarantees
identical instantiations given the same schema. This is espe-
cially beneficial as the platforms used by data scientists dur-
ing the model development stage typically differs from the
platforms used by ML engineers during model deployment
and scoring. With the grammar-based approach, the deploy-
ment of a specific text featurization component is reduced
down to sharing a human-readable schema between model
development and deployment. Moreover, if we do not want
to create the featurization from scratch, TEXTWISER mod-
els support the standard persistence protocols such as pickle

and torch.save to store the resulting model rather than the
schema.

EaSe: Embeddings-as-a-Service
Let us finally share a proof-of-concept application powered
by TEXTWISER. This application’s motivating scenario is as
follows: even with a unified text featurization library, similar
efforts are re-invented in machine learning projects. A con-
siderable amount of data scientist hours and shared comput-
ing resources (especially GPUs) are spent utilizing text data,
often leading to different results. According to NVIDIA’s
benchmark, a V100 GPU making inference on a BERT base
model can process 766 sequences per second2. Sequences
with over 100M tokens is considered typical in text datasets
which amounts to 36 hours of GPU time spent generating
embeddings for a single featurization task.

Moreover, there is a proliferation of pre-processing
pipelines, embedding models, and pooling methods, re-
sulting in different representations across different use
cases with no quantified benefit. This complexity only in-
creases when fine-tuning and data-specific models are in-
troduced. Our proof-of-concept, EASE: EMBEDDINGS-AS-
A-SERVICE, abstracts these steps away from data scientists
by hosting pre-computed embeddings for various datasets
and language models. EASE serves feature vectors built via
TEXTWISER to users on-demand with a REST API and re-
moves repetitive steps from the AI modeling pipeline and
offers benefits such as:

• Reduced entry barrier to using textual data

• Ease of sharing language models across teams

• Transparency and archivability of data processing steps

• Immediate baseline performance from readily available
embeddings

An additional benefit is increased security and privacy.
When embeddings are already available for consumption,
fewer access requests are needed for computing resources
and raw data stored across multiple systems. There ex-
ist similar efforts in the public domain, such as bert-as-a-
service3, albeit specific to only one approach compared to
what TEXTWISER can offer through EaSe.

Conclusion
The utilization of unstructured text data and sophisticated
featurization methods are among the most significant ad-
vances in unlocking better performance in real-world ap-
plications. Given the evolving research landscape and the
plethora of tools, we run the risk of building pipelines and
solutions that are not only repetitive but may become ob-
solete in a short time. This increases the development time,
maintenance cost and the room for error.

2NVIDIA Data Center Deep Learning Product Perfor-
mance: https://developer.nvidia.com/deep-learning-performance-
training-inference

3bert-as-service, Han Xiao, 2018: https://github.com/hanxiao/
bert-as-service

15443

In this paper, we presented TEXTWISER that can alleviate
this problem by providing access to state-of-the-art text fea-
turization methods in a unified fashion. Our novel research
contribution introduces a context-free grammar to capture
the representation of (complex) embeddings. This formalism
also opens the door for building embeddings automatically
from components as a future research direction.

We welcome the feedback from the AI community. Hope-
fully, TEXTWISER can serve as an accelerator in both
academia and the industry for the development of innova-
tive AI applications that enjoy the benefits of ever-increasing
amounts of unstructured data.

Acknowledgements
We would like to thank Justin Rackliffe and Nurtekin
Savaş for their support in open source software and Daniel
Choate, Nicholas Cilfone, Pranab Mohanty and Siddharth
Narayanan for their help with the EaSe service.

References
Akbik, A.; Blythe, D.; and Vollgraf, R. 2018. Contextual
String Embeddings for Sequence Labeling. In COLING
2018, 27th International Conference on Computational Lin-
guistics, 1638–1649.

Bergstra, J.; Yamins, D.; and Cox, D. 2013. Making a sci-
ence of model search: Hyperparameter optimization in hun-
dreds of dimensions for vision architectures. In Interna-
tional conference on machine learning, 115–123.

Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirich-
let allocation. Journal of machine Learning research 3(Jan):
993–1022.

Chomsky, N. 1956. Three models for the description of lan-
guage. IRE Transactions on information theory 2(3): 113–
124.

Cocke, W. J.; and Schwartz, J. T. 1970. Programming lan-
guages and their compilers. Courant Institute of Mathemat-
ical Sciences.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 .

Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.;
Liu, N.; Peters, M.; Schmitz, M.; and Zettlemoyer, L. 2018.
Allennlp: A deep semantic natural language processing plat-
form. arXiv preprint arXiv:1803.07640 .

Golub, G. H.; and Reinsch, C. 1971. Singular value decom-
position and least squares solutions. In Linear Algebra, 134–
151. Springer.

Honnibal, M.; and Montani, I. 2017. spaCy 2: Natural
language understanding with Bloom embeddings, convolu-
tional neural networks and incremental parsing. To appear.

Jones, K. S. 1972. A statistical interpretation of term speci-
ficity and its application in retrieval. Journal of documenta-
tion .

Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
2010. ISAC - Instance-Specific Algorithm Configuration.
In Coelho, H.; Studer, R.; and Wooldridge, M. J., eds., ECAI
2010 - 19th European Conference on Artificial Intelligence,
Lisbon, Portugal, August 16-20, 2010, Proceedings, volume
215 of Frontiers in Artificial Intelligence and Applications,
751–756. IOS Press. doi:10.3233/978-1-60750-606-5-751.
URL https://doi.org/10.3233/978-1-60750-606-5-751.
Kadioglu, S.; and Sellmann, M. 2008. Efficient Context-
Free Grammar Constraints. In Fox, D.; and Gomes, C. P.,
eds., Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008, 310–316. AAAI Press. URL http://www.
aaai.org/Library/AAAI/2008/aaai08-049.php.
Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma,
P.; and Soricut, R. 2019. Albert: A lite bert for self-
supervised learning of language representations. arXiv
preprint arXiv:1909.11942 .
Le, Q.; and Mikolov, T. 2014. Distributed representations
of sentences and documents. In International conference on
machine learning, 1188–1196.
Lee, D. D.; and Seung, H. S. 2001. Algorithms for non-
negative matrix factorization. In Advances in neural infor-
mation processing systems, 556–562.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692 .
Loper, E.; and Bird, S. 2002. NLTK: The Natural Language
Toolkit. In Proceedings of the ACL-02 Workshop on Ef-
fective Tools and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguistics - Volume
1, ETMTNLP ’02, 63–70. USA: Association for Compu-
tational Linguistics. doi:10.3115/1118108.1118117. URL
https://doi.org/10.3115/1118108.1118117.
McInnes, L.; Healy, J.; and Melville, J. 2018. Umap: Uni-
form manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426 .
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026–8037.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research 12: 2825–2830.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365 .

15444

Řehůřek, R.; and Sojka, P. 2010. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works, 45–50. Valletta, Malta: ELRA. http://is.muni.cz/
publication/884893/en.
Ruder, S.; Peters, M. E.; Swayamdipta, S.; and Wolf, T.
2019. Transfer learning in natural language processing. In
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Tutorials, 15–18.
Sanh, V.; Debut, L.; Chaumond, J.; and Wolf, T. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108 .
Sellmann, M. 2006. The theory of grammar constraints.
In International Conference on Principles and Practice of
Constraint Programming, 530–544. Springer.
Stanley, K. O.; and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
computation 10(2): 99–127.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu,
J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest,
Q.; and Rush, A. M. 2019. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. ArXiv
abs/1910.03771.

15445

