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Abstract 

This paper describes a fast hand strength estimation model 
for the game of Gin Rummy. The algorithm is computation-
ally inexpensive, and it incorporates not only cards in the 
player’s hand but also cards known to be in the opponent’s 
hand, cards in the discard pile, and the current game stage. 
This algorithm is used in conjunction with counterfactual re-
gret (CFR) minimization to develop a gin rummy bot. CFR 
strategies were developed for the knocking strategies. The 
hand strength estimation algorithm was used to select a dis-
card that balances the goals of maximizing the utility of the 
player’s hand and minimizing the likelihood that a card will 
be useful to the opponent. A study of the parameterization of 
this estimation algorithm demonstrates the soundness of ap-
proach as well as good performance under a wide range of 
parameter values.  

Introduction   

In games of perfect information, players have full 

knowledge of the game state. Examples of these games in-

clude checkers, chess, and go. Game theoretic approaches, 

like alpha-beta pruning, can explore the game tree to find 

the best outcomes for a player (Samuel 1959). The size of 

the game tree is often the constraining factor for solving 

these types of games.  

In games of imperfect information, players may have only 

partial information about the current game state. Examples 

of these types of games include poker and gin rummy, in 

which, for example, the cards in an opponent’s hand may be 

unknown to the player. In these games, nodes in possible 

game trees are grouped into sets, called information sets, 

which contain nodes that are indistinguishable to the player 

due to the partial information available to them (Leyton-

Brown and Shoham 2008). Players then play a common 

strategy for all nodes within an information set. For exam-

ple, counterfactual regret (CFR) minimization finds an equi-

librium strategy by minimizing a weighted regret of selected 
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actions within an information set, where the weights are 

based on the likelihood that a node would be reached by an 

opponent’s strategy (Hart and Mas-Colell 2000).  

A constraint for nodes within an information set is that 

they have the same set of available actions. For a discard 

decision in Gin Rummy, this constraint creates a challenge. 

The discard decision requires the selection of 1 of 11 cards. 

Given the more than 60 billion 11-card hands, the explosion 

in the number of information sets limits the ability to di-

rectly develop a CFR strategy for this decision point. 

This paper introduces an approach to a Gin Rummy bot 

that uses CFR-based approach for knocking decisions, a 

heuristic approach to drawing decisions, and a hand strength 

estimation model for discarding decisions. The model is 

used to select a discard that attempts to maximize the current 

player’s chances of winning. The approach incorporates not 

only the effect of discards on the player’s cards, but also an 

estimate of the effect on the opponent’s hand given the 

knowledge that the player has of the opponent’s hand and 

the current game state. The resulting discard approach is 

computationally inexpensive, requiring the look ahead of 

just one turn in the game. Studies of parameterization show 

that the model’s design choices are sound. In addition, the 

model is not extremely sensitive to the choice of parameter 

values. Instead, there is a range of values that work well.  

Background 

Gin Rummy 

Gin Rummy is a part of the Rummy family of card games in 

which, generally speaking, there is a drawing and discarding 

action involved in making sets of similar cards, called 

melds. While the origins of Rummy are unclear, speculation 

of its origins includes the Chinese games Mah-Jong and Kun 

P’ai, and the Mexican game of Conquian (Parlett 2002).  
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The Gin Rummy variant of Rummy is thought to have 

been invented in 1909 in New York by Elwood T. Baker 

(NYT Archives 1950). Gin Rummy is a two-player game in 

which each player is dealt ten hidden cards from a 52-card 

deck. One card from the remaining 32 cards is turned face 

up to start a discard pile, while the other cards form the 

stockpile. In this turn-based game, each player first draws 

either the face-up card at the top of the discard pile, or the 

top face-down card from the stockpile. They then choose 

one card from their hand and place it face up on the top of 

the discard pile. One variation to the normal game play oc-

curs on the first turn. If the first player chooses not to draw 

the face up card, the other player has an opportunity to draw. 

Broadly speaking, the objective of the game is to group 

all of a player’s cards into melds. The melds consist of three 

or more cards of the same rank, called a set, or three or more 

cards of the same suit with consecutive ranks, called a se-

quence. For the purposes of consecutive ranks, Aces are al-

ways low, followed by the numbered cards in ascending or-

der, and then Jacks, Queens, and Kings. Each card has a 

point value, with aces worth one point, numbered cards 

worth the number of points on the card, and face cards worth 

ten points. The specific objective of a hand is to minimize 

the number of deadwood points, which is the sum of the 

points of the cards that are not in a meld. 

A hand ends when there are only two cards left in the 

stockpile, or either of the two players chooses to end the 

hand by “knocking.” If there are only two cards left in the 

stockpile, the hand is considered a tie. Once a player has ten 

or fewer deadwood points, they may knock when discard-

ing. At this point, they reveal their hand and compare their 

deadwood points with the opponent’s points. The non-

knocking player has the ability to “lay off” unmelded cards, 

adding them to the opponent’s melds if possible. Any cards 

that are laid off do not count towards the player’s deadwood.  

To determine the score of the hand, in the case where the 

knocker’s deadwood is less than the opponent’s, the knocker 

gets points equal to the difference in the deadwood points. 

In the case where the knocker has a greater or equal dead-

wood than the opponent, the opponent scores the difference 

between deadwoods plus a bonus, typically 10 or 25 points. 

In the case where the knocker has no deadwood, they have 

gone “gin.” In this case, the opponent is not allowed to lay 

off any cards, and the knocker scores the opponent’s dead-

wood points plus a gin bonus, which is typically either 20 or 

25 points. A game consists of multiple hands and continues 

until one player has a cumulative score of at least 100 points.  

Equilibrium Strategies in Imperfect Information 

Games 

An imperfect information game G, in extensive form, can be 

represented as a tuple 𝐺 = (𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼), where 

(Leyton-Brown and Shoham 2008): 

 𝑁 is a set of players. 

 𝐴 is a set of actions available to players. 

 𝐻 is a set of non-terminal nodes in the game tree. 

These internal nodes in the game tree represent deci-

sion points for the player, and a path from the root to 

a leaf represents the sequence of decisions in one in-

stance of a game. 

 𝑍 is the set of terminal nodes in the game tree. Each 

node represents an outcome of a single game. 

 𝜒, the action function, maps a non-terminal node in 

𝐻 to the actions available to a player at this node. 

 𝜌, the player function, maps a non-terminal node in 

𝐻 to the player who makes the decision at this node. 

 𝜎, the successor function, maps a non-terminal node 

in the game tree and an action taken at that node to a 

successor node, in either 𝐻 or 𝑍. This function deter-

mines the next node in the game tree based on the 

current node and the action taken. 

 𝑢, is a utility function that maps a terminal node to a 

vector containing the payoff for each player should 

the game end at that particular node. 

 𝐼 is a partition of the nodes in 𝐻 into sets of nodes. 

The partition 𝐼 typically will represent a set of game 

nodes that are indistinguishable to a player based on 

the partial information available. 

For the game of Gin Rummy, we seek a Nash equilibrium 

strategy for our player. When players are playing Nash equi-

librium strategies, no player can unilaterally change their 

strategy and improve their payoff (Leyton-Brown and Sho-

ham 2008). In this sense, these strategies are non-exploita-

ble.  

Counterfactual Regret Minimization 

Regret minimization provides one approach for finding 

Nash equilibrium strategies (Hart and Mas-Colell 2000). 

Regret, as defined in game theory, is similar to what humans 

are familiar with, the feeling of dissatisfaction over making 

a decision that results in unwanted outcomes, compounded 

with the knowledge that a better alternative was possible. A 

regret matching strategy is one where players choose actions 

proportional to the regret they experienced when not choos-

ing that action in the past. 

Counterfactual Regret Minimization (CFR) is a regret 

minimization algorithm that finds Nash equilibrium strate-

gies in sequential imperfect-information games, where the 

players take turns taking actions at the decision points in a 

game (Zinkevich 2008). In the algorithm, the entire game 

tree is explored, with probabilities that a game node is 

reached being passed down the tree, and the payoffs for 

players being passed back up the tree. 

As the game tree is explored, CFR calculates the total 

counterfactual regret of playing each action at every node. 
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First, the algorithm finds the expected utility of a node under 

the current strategy based on the probability of reaching 

each terminal node that is a descendant of this node and the 

payoff at the terminal node. Then, the algorithm calculates 

the regret of not playing each strategy by taking the utility 

at each successor node that is reached by taking an action 

and subtracting the expected utility of the current node. This 

regret is weighted by the probability that the other player 

would play to this node in the current strategy. It is counter-

factual in that we assume that the current player is deliber-

ately trying to play to this node. Zinkevitch et al. showed 

that the average counterfactual regret matching strategy 

converges to a Nash equilibrium strategy for zero-sum 

games (2008).  

Exhaustive search of the game tree is infeasible in large 

games like Gin Rummy. Lanctot et al. (2009) demonstrated 

how Monte Carlo CFR (MCCFR) could sample actions in 

the game tree in such a way that the sampled counterfactual 

regrets approached the actual regrets in expectation. 

Hand Strength Estimation 

While the agent used MCCFR for the knocking strategy, 

there was a challenge in applying it to the discard strategies. 

Regret is calculated on an information set basis, and all 

nodes in an information set must have the same set of actions 

available. Since these actions in the discard strategy depend 

on cards in a players hand, there is an explosion in the num-

ber of information sets for this strategy. 

Instead, the discard strategy used a hand strength estima-

tion approach. In previous research, generic approaches to 

player state estimation heuristics used models based on the 

expected payoff for a player, the degree to which a player 

controls the outcome of a game, and the number of turns 

remaining in the game (Clune 2007). In the strength estima-

tion heuristic described in the next section, these concepts 

are mapped to observable attributes including the cards held 

by the player, cards that have been discarded, cards known 

to be held by the opponent, and the current turn number. 

Methodology 

As shown in Figure 1, the agent is built on three primary 

strategies implemented as three different methods for each 

decision point in the game: drawing, discarding, and knock-

ing. The knocking strategy was developed using an MCCFR 

approach. A simplified drawing strategy and discard strat-

egy was implemented, and regret captured based on an ab-

straction of the game state that minimized the number of in-

formation sets that needed to be considered. The resulting 

strategy for knocking was based on the regret matching 

strategies from the MCCFR training process.  

The drawing strategy uses a simple heuristic. If the face-

up card does not contribute to making a meld, the player 

draws the face-down card. Otherwise, if the face-up card 

contributes to a meld which reduced the total number of 

deadwood points, the face-up card is drawn. 

 

 
Figure 1. Block diagram of the three primary strategies. 

 

The knocking strategy used an abstraction that included 

the number of deadwood points and the turn number. If there 

is no deadwood, the agent always knocks since gin is possi-

ble. Otherwise, the agent will knock in its first four turns, if 

possible. If it is later than the fourth turn, the agent will not 

knock, but instead try to get gin or undercut the opponent. 

The knocking strategy that was implemented based on the 

strategies found by MCCFR put a large emphasis on creat-

ing melds to achieve gin or undercut the opponent. This em-

phasis helped in the design of the hand strength estimation 

algorithm used for discarding. 

When an agent needs to make a discard decision, it scores 

each discard that is not participating in a meld and selects 

the card with the highest score. The formula used to score a 

discard c is: 

𝑠(𝑐) = 𝑑0(𝑐) + 𝛼𝛽𝑡𝑑𝑓(𝑐) + ∑ 𝛿𝑖 𝜔𝑖        (1) 

where: 

• 𝑑0(𝑐) is the deadwood that is in our hand if we dis-

carded card c. 

• 𝛼 is an initial weighting term that controls the relative 

value of deadwood at the turn versus future expected 

deadwood. 

• 𝛽 is a decay weighting term, set to be between 0 and 1, 

that allows for exponential decay of the value of future 

expected deadwood as the game progresses. 

• 𝑡 is the turn number in the game. Each time the agent 

draws a card, this turn number increments. 

• 𝑑𝑓(𝑐) is an estimate of future deadwood if we dis-

carded card c, calculated as described below. 

• 𝛿𝑖 is an indicator variable which evaluates to 1 if the 

card contains the ith attribute relating to the usefulness 

of this card to the opponent, as described below. 

• 𝜔𝑖 is a weight for the value of the ith attribute. 

15467



To calculate the expected deadwood in the hand, the agent 

looks one turn in the future. Each card that has not yet been 

seen is added to the hand, and the card that minimizes dead-

wood is discarded. The top k deadwood values then are av-

eraged together to calculate 𝑑𝑓(𝑐). Empirically, relatively 

small values of k, between 4 to 8, seemed to work well. In-

terestingly this is much smaller than the number of unseen 

cards in most cases. It is close, though, to the maximum 

number of cards that could be drawn and made into melds 

in a typical hand. This result seems consistent with the em-

phasis on going gin or undercutting an opponent, suggested 

by the CFR knocking strategy. 

The indicator variables in formula 1 are associated with 

pairs of attributes that reflect whether it is likely that an op-

ponent will be able to use the discarded card in a meld. 

These attributes include penalties, which indicate that the 

discard is likely to help the opponent, as well as bonuses, 

which indicate that the discard is less likely to help the op-

ponent. The penalties are positive values since the card cho-

sen is the one with the minimum score, while the corre-

sponding bonuses are negative values. 

1. Sequence: The penalty version of this indicator variable 

is set to 1 if the opponent is known to have cards that 

could make a sequence with this card. In other words, the 

opponent has two cards of the same suit with nearby 

ranks, such that this card would be in a meld that is a run 

or sequence. The bonus version of this variable is set if 

the discard cannot make a sequence/run for the opponent 

because the suited cards with nearby ranks have either 

been discarded or are in the player’s hand. 

2. Set: The penalty indicator variable is set if the opponent 

has two cards of the same rank as the discard. The bonus 

variable is set if the discard cannot make a set for the op-

ponent because two or more cards with the same ranks 

have either been discarded or are in the player’s hand. 

3. Rank: The penalty variable indicates that the opponent is 

known to have one card of the same rank as the discard. 

The variable is set if one other card with the same rank is 

not available to the opponent, because it has been dis-

carded or is held by the player. 

4. Adjacent: The penalty indicator variable is set if the op-

ponent is known to have a card of the same suit as the 

discard that is one rank away. The bonus variable is set if 

one card, of the same suit and with an adjacent rank, is not 

available to the opponent.  

5. 2-Adjacent: The penalty indicator variable is set if the op-

ponent is known to have a card of the same suit as the 

discard that is two ranks away. The bonus variable is set 

                                                 
1 Neller, T.; Heibel, J.; and Francis, P.E. 2019. “Gin-Rummy-

EAAI: Gin Rummy software for the Gin Rummy EAAI Under-

graduate Research Challenge.” https://github.com/tneller/gin-

rummy-eaai.  Accessed: 12/1/2020. 
 

if one card, of the same suit and with rank that is two away 

from the discard, is not available to the opponent.  

Note that the penalty version of the first two of these varia-

bles indicate that the opponent will definitely be able to 

make a particular type of meld with this card, where the bo-

nus version indicates that the opponent cannot make a par-

ticular type of meld with this card. The last three variable 

pairs represent less certainty. These variables are set if one 

of the cards needed for a particular 3-card meld is known to 

be held by the opponent (in the penalty version), or known 

to be unavailable to the opponent (in the bonus version). 

Evaluation of the Hand Strength Estimation 

Algorithm 

To evaluate the hand strength estimation algorithm, the au-

thors searched for a set of a parameters which worked well 

against the base agent from the EAAI competition1, as well 

as a set of base agents using a variety of heuristic ap-

proaches. Then each of the parameter values was varied to 

evaluate the soundness of including the parameter in the 

model and the sensitivity of the model to the parameters’ 

values. 

The parameters for the baseline agent were chosen as fol-

lows: 

• Initial Weighting Term: 20 

• Decay Weighting Term: 0.9 

• Draw Cards to Consider: 6 

• Sequence: +20 points for penalty, -10 point for bonus 

• Set: +20 points for penalty, -10 point for bonus 

• Rank: +4 points for penalty, -4 point for bonus 

• Adjacent: +5 points for penalty, -5 point for bonus 

• 2-Adjacent: +3 points for penalty, -3 point for bonus 

The agent was then evaluated by playing 50,000 games 

against itself, with one of the parameter pairs changed.  

The first three parameters are intended to capture the ef-

fect of a discard on the agent’s expected deadwood. These 

parameters balance immediate deadwood reduction that re-

sults in discarding a card and possible future deadwood re-

duction that would occur if the card were retained to be 

added to a meld after a obtaining additional draw cards. 

Figure 2 shows the results when varying the initial 

weighting term. Increasing the value of this parameter 

places less weight on immediate reductions in deadwood 

value and instead favors larger reductions in deadwood val-

ues that would be possible by adding cards to melds. As 

shown in this figure, the agent performs quite poorly at low 

values for this parameter, indicating that it is important to 
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weight future deadwood reductions more heavily than im-

mediate ones. However, there is a large range of values 

greater than 20 that perform well, winning approximately 

50% of the time against the baseline agent. The large range 

of values indicates that for sufficiently large values, the 

model is not particularly sensitive to the exact value for this 

parameter. Moreover, while the optimal value appears to be 

about 40, the fact that this parameter value yielded only a 

51% win rate indicates that the chosen value of 20 for this 

parameter is a fairly good one. 

Figure 3 shows the results when varying the decay 

weighting term. The agent performed best when the decay 

parameter was set to between 0.9 and 1.0, with the highest 

win rate of 0.5073 reached at a parameter value of 0.94. This 

result supports the idea that the value of future deadwood 

improvements reduces as the game progresses. As before, 

the performance of the agent is fairly consistent within this 

range, indicating that the model is not overly sensitive to the 

exact value of this parameter. Moreover, the value chosen of 

0.9 for this parameter seems to be a good one. 

In order to determine the potential for future deadwood 

reduction, only the top k deadwood values resulting after a 

possible draw card are considered. Figure 4 shows the effect 

of varying this parameter from the chosen value of 6. The 

best values occur in the range of 3 to 6, indicating that the 

model does best when only the largest reductions in dead-

wood values are considered. The optimal winning rate of 

0.5059 occurs at a parameter value of 5. 

The remaining parameter values are focused on capturing 

the potential of a discard to improve the opponent’s hand. 

These parameters include ones that capture whether a card 

definitely could be or could not be used by opponent in a 

meld, as well as ones  

 

 

Figure 2. Win rate of agent with varying initial weighting 
parameters against one with a fixed value of 20.  

 

Figure 3. Win rate of agent with varying decay weighting 
parameters against one with a fixed value of 0.9.  

 

Figure 4. Win rate as a function of varying the number of 
draw cards considered, when estimating future deadwood 

reductions. 

For example, figure 5 shows the results when varying the 

definite meld parameters, the sequence and set bonuses and 

penalties. In these experiments, the bonuses and penalty val-

ues for one of the parameters was set to be equal in magni-

tude. It was then compared against the base line parameter-

ization that used +20 for a penalty value and -10 for a bonus 

value. As shown in the figure, when these values are set to 

zero, effectively removing them from the model, the perfor-

mance of the model drops, with win rate of between 0.4691 

and 0.4803. Moreover, for the cases at the left side of the 

graph, when the sign of the penalties of bonuses are incor-

rect, the performance of the system degrades as the magni-

tude of these values increases. There does seem to be a range 

of parameter values, though, that performs well. It appears 

that the weights of the set and sequence parameters should 

be roughly equal. As in the previous experiments, the fact 

that the win rate of the best parameterizations was close to 
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0.5 against the agent with the baseline parameters indicates 

that these baseline parameters are fairly good. 

Figure 6 shows the results of varying the possible meld 

parameters. As with the definite meld parameters, one pair 

of parameters was changed at a time, with the magnitude of 

the bonus and penalty parameters equal in each experiment 

against the baseline agent. As shown in the figure, these pa-

rameters are all important to the model. Removing any of 

these parameter pairs from the model, by setting the values 

to 0, reduces the agent performance. In addition, setting the 

sign on these parameters incorrectly, as shown with the tests 

at the left of the figure also reduces performance. 

The vertical axis does not start at 0 in figure 6, in order to 

be able to examine subtle differences in these parameter val-

ues. All have a range of values that performs on par with the 

agent with baseline parameter values. The results seem to 

indicate that the adjacent parameter value should be the larg-

est, since it achieves the highest win rate of 0.5045 at a value 

of 3 for the bonus and -3 for the penalty. Next in terms of 

importance would be the rank parameter value, which has a 

highest win rate of 0.5023 at a value of 2 for the bonus and 

-2 for the penalty. Finally, comes the 2-adjacent parameter, 

which achieves its best win rate of 0.5002 at a values of 1. 

Note that since these best win rates are all near 0.5, the pa-

rameter values that were chosen for the baseline agent ap-

pear to be good ones.  

This study of the parameterization has limitations which 

should be noted. First the parameterization studied the per-

formance of the agent against a fixed baseline agent. Varia-

tions in the opponent’s play would affect the hand strength 

estimation model, particularly from the perspective of the 

parameter values that capture the potential benefit of a dis-

card to the opponent. Moreover, the parameterization study 

varied just one or two parameter values at a time. Exploring 

more of the space of parameter values could yield better per-

formance from the agent. 

 

 

Figure 5. Win rate against baseline agent with varying defi-
nite meld parameters.  

 

Figure 6: Win rate against agent with baseline parameters, 
when varying possible meld parameter values 

Conclusions 

An agent capable of playing gin rummy was developed us-

ing strategies based on a counterfactual regret (CFR) mini-

mization and a novel hand-strength estimation algorithm. A 

simple heuristic approach was used for drawing decisions. 

CFR was applied to extract a strategy for the knocking de-

cision points for the agent. The hand-strength estimation al-

gorithm was designed with three key aspects: a mechanism 

to balance short- and long-term improvements in the agent’s 

hand, the ability to discount the worth of long-term improve-

ments as the game progresses, and a capability to estimate 

the likelihood that a discard would benefit the opponent. 

A study of the parameterization of the hand-strength 

model demonstrated value in this approach. All of the pa-

rameters had fairly wide ranges of values for which the 

model performed well. Moreover, for parameters that could 

be removed from the model, removal reduced agent perfor-

mance. 
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