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Abstract

Gin Rummy is a popular two-player card game involving
choices to draw and discard cards to form sets of match-
ing cards. Unlike other popular games such as Chess, Poker,
and Go, there is little formal artificial intelligence research
about how to make good decisions when playing Gin Rummy.
In this paper, we develop an agent that plays Gin Rummy
through a combination of known and expected card values,
modeling the opponent to predict their cards of interest, and
a conservative approach to assessing when to end the hand.
In addition to discussing our observations about Gin Rummy
that inspired our agent’s design and how the agent works, we
evaluate the relative importance of various features employed
by our agent by competing agents which implement various
subsets of those features.

1 Introduction
Gin Rummy is a two-player card game that, despite hav-
ing simple rules, introduces the opportunity for complex
strategic decision-making based on both hidden informa-
tion and randomness. Unlike other incomplete information
games such as Poker, there has been little scholarly study
about playing Gin Rummy. Although Poker has a betting
element that is absent in Gin Rummy, it contains other in-
teresting challenges not found in Poker such as a sequence
of actions per turn and gambling whether to terminate the
round in confidence of having a better score than the oppo-
nent. The absence of existing strategies in the literature, the
simplicity of the game rules, and the potential to implement
complex reasoning makes Gin Rummy an intriguing prob-
lem space for artificial intelligence research.

Using the limited information available to a player, our
approach uses approximate statistical analysis of potential
hand outcomes and analysis of the opponent’s strategy given
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observations of their actions each turn. In addition, we ap-
plied domain knowledge from our experience playing Gin
Rummy to introduce a conservative, but surprisingly sim-
ple and effective, strategy that decides to end the round only
when the player has the best possible score (because the ob-
jective is to minimize a non-negative score, this is 0). These
elements synergize to prepare for the case that the opponent
ends the game first because there is a penalty for ending the
game while having a greater score than the other player.

In this paper, we present our Gin Rummy-playing agent
and its components in further detail. After we present how
to play Gin Rummy with our insights in Section 2, Section 3
reviews related research about gameplaying agents. Follow-
ing this background, Section 4 introduces each component
of our agent in more depth. To study how our agent per-
forms, we perform experiments involving play against vari-
ations of itself in Section 5. Based on the results, we provide
discussions and propose future work in Section 6.

2 Game Rules
Gin Rummy is a two-player card game played in a series of
rounds. At the beginning of each round, each player is dealt a
ten-card hand from a standard 52-card deck. One additional
card is placed face up as the initial discard pile. The players
alternate turns making two or three decisions in sequence:

1. whether to draw the top card from the discard pile (face-
up) or from the deck (face-down),

2. which card to discard from their hand, and

3. whether to knock and end the round (if applicable).

Each card has a point value, with aces worth one point, pip
cards worth their number, and face cards worth ten points.
Cards are worth no points if they are grouped into melds of
at least three cards, either all matching rank (sets) or forming
a straight within the same suit (runs). The sum of the cards’
point values in a player’s hand is called their deadwood. If
a player has at most ten deadwood points at the end of a
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Turn Player Opponent
• Cards in discard pile
• Order of cards in discard pile
• Who discarded each card
• Who chose to take which card 

from discard pile
• Cards in each player’s hand

that were drawn from discard 
pile and not discarded again

• Who chose to not take which
card from discard pile

• Number of cards remaining in 
deck

• No player knocked yet (if hand 
is ongoing)

• Cards in turn player’s 
hand

• Cards in turn player’s 
hand are neither in 
deck nor in opponent’s 
hand

• Opponent does not
know cards in turn
player’s hand that were 
either drawn from deck 
or dealt at start of 
game

• Turn player’s
strategy/preferences

• Cards in deck (unless one player knows all cards in other player’s hand)
• Order of cards in deck
• Other player’s strategy/preferences

• Cards in opponent’s 
hand

• Cards in opponent’s
hand are neither in
deck nor in turn
player’s hand

• Turn player does not
know cards in
opponent’s hand that
were either drawn from
deck or dealt at start of
game

• Opponent’s
strategy/preferences

Both

Neither

Figure 1: Observable and known information to each player
during a game of Gin Rummy. “Turn player” and “Oppo-
nent” are relative to whoever is acting on the current turn.

their turn, they may knock to reveal their hand and declare
their melds. Their opponent takes one final turn, reveals their
hand and declares their melds; the opponent is then given
the opportunity to lay off unmelded cards into the knock-
ing player’s melds. After laying off, the player with fewer
deadwood points wins the round and scores points equal to
the difference between the two players’ deadwood points.
The knocking player loses ties. Under the American rules,
a player who knocks with zero deadwood points goes gin
and scores an additional 25 points; if the winner was not
the player who knocked, then they undercut their opponent
and score an additional 25 points. At the end of the round, a
player wins if they have accrued at least 100 points through-
out the game—otherwise, they play another round.

2.1 Observable Information
The information available to each player is asymmetric be-
cause the hand of cards reveals their contents exclusively
to the hand’s owner. Figure 1 displays what information is
available to each player during a game of Gin Rummy. In
general, a player can observe the ten cards in their personal
hand as well as all the cards (and their order) in the discard
pile. Neither player knows the order of the cards that remain
in the deck, and the degree to which a player knows which
cards are in the deck depends on how much they know (and
remember) about the cards in their opponent’s hand.

On a player’s turn, the new information that they observe
is limited. Drawing the top card of the discard pile does not
reveal any new information to that turn’s player, but it is their
final opportunity to add the card to their hand. On the other
hand, drawing the top card from deck reveals another card
that was not yet seen; this tells the player that it was not a
card that is hidden in the opponent’s hand. The player then
knows that such a card is no longer in the deck as well.

During the opponent’s turn, a player observes many new
pieces of information: whether the opponent chose to draw
or ignore the top face-up card in the discard pile, which
card the opponent chose to discard, and whether the oppo-
nent chose to knock. In this case, the opponent’s choice to

do something is as informative as the opponent’s choice to
not do something because either action implies information
about their unique knowledge/observations.

3 Related Works
Gin Rummy is far from the first game to be a target of study
within artificial intelligence (AI). At a panel about the his-
tory of AI playing games, celebrating the fiftieth anniversary
of the first computer chess tournament, many speakers noted
that games have been a popular domain since the earliest
days of the field (Greenwald et al. 2020). They cited vari-
ous scientists’ reasons for this interest, ranging from focus
on the core challenges as a gateway to real-world problems,
to better understanding how people think when solving chal-
lenges. We focus on several games and their related AI tech-
niques that share commonalities with our approach.

Algorithms inspired by game theory defined early ap-
proaches to adversarial search that are still used today.
These techniques propagate each player’s actions across
board states to create trees of possible game histories—
depth-first search computes the path from the root that opti-
mizes each turn player’s final score (or maximizes the differ-
ence in scores when the player with the greatest score wins).
Such techniques include Minimax (Russell and Norvig
2009) and Monte-Carlo Tree Search (Chaslot et al. 2006).

For games whose state spaces are too large for feasible
evaluation from the leaves to the root, depth cut-offs limit
the propagation to several turns’ foresight rather than en-
tire game histories. To account for myopic decision mak-
ing where the final payoffs are not involved in the adver-
sarial search computation, evaluation functions estimate the
value of intermediate game states. These functions serve
as a heuristic to guide the search when the exact payoffs
are too far into the game’s future to be known. Domain
knowledge can engineer reasonable evaluation functions for
well-studied games like Chess (Shannon 1950). Games with
greater uncertainty due to randomness, such as Backgam-
mon (Tesauro 1995), or enormous state spaces that cannot
possibly be as well-studied, such as Go (Silver et al. 2016),
employ machine learning to automate the development of
evaluation functions because people have not yet formalized
the best features to assess intermediate game states.

Unlike the above games where the intermediate game
states are fully observable to all players (pieces on a board),
Gin Rummy has intermediate states with much more hidden
information between the cards in the deck and opponent’s
hand. These features are also prevalent in the card game
Poker, which the AI community has studied formally for
about two decades. Similar to the early Poker-playing agent
Loki-2 (Billings et al. 1999), our agent relies on probabilistic
approximations to address the high uncertainty when evalu-
ating intermediate states. Loki-2’s Hand Evaluator compo-
nent considers how its hand’s value could compare to possi-
ble combinations of cards in some opponent’s hand.

The sets of possible cards available to the opponent are
also updated via Loki-2’s Opponent Modeling component
that translates their revealed cards and actions into cards that
influence such decisions. Other opponent modeling tech-
niques that have been used in Poker include learning each
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opponent’s parameters within a strategy space (Hoehn et al.
2005) and using methods like particle filters to approximate
the opponent’s state (Bard and Bowling 2007). Because Gin
Rummy has a greater focus on matching cards than outrank-
ing an opponent (or bluffing) to win, we adjust our uses of
opponent modeling and hand evaluation accordingly.

The latter approaches are similar to an application
of probabilistic plan recognition to hypothesize opponent
strategies in the videogame StarCraft (Kabanza et al. 2013).
In general, plan, activity, and intent recognition research
provide opportunities to model the other agents based on
their actions. These models can identify the opponents’ way-
points of interest in first-person shooter videogames (Tas-
tan, Chang, and Sukthankar 2012) as well as infer sets of
goals over which the observing agent may compute respon-
sive plans (Freedman and Zilberstein 2017). Although we do
not use recognition algorithms, our agent similarly uses the
opponent model to affect its reasoning over actions to take.

4 Methods
Our Gin Rummy-playing agent consists of three main com-
ponents, each used for at least one decision-making task:
Myopic Meld Distance estimation to identify potentially
valuable cards for the agent’s hand, Opponent Modeling to
predict potentially valuable cards for the opponent’s hand,
and a conservative knocking strategy. We describe how each
component works below. For the majority of the in-game de-
cisions, our agent uses these components to compute a hand
evaluation function rt based on the current game state. S .

Definition 1 A game state S is a tuple

(Hi, Ho, D, t, Di, U)

where Hi is the set of cards in the agent’s hand, Ho the set
of known cards in the opponent’s hand, D the set of cards in
the discard pile, t ∈ D the face-up card on top of the discard
pile, Di ⊂ (D ∪ Ho) the set of cards the agent has discarded,
and U the set of unrevealed cards either remaining in the
face-down pile or hidden in the opponent’s hand.

Definition 2 A hand evaluation function rt maps (H , S ) tu-
ples to positive real numbers, where H is a hand to evaluate
in game state S . rt (H1, S ) < rt (H2, S ) denotes that H1 is
more apt to win than H2 from game-state S .

We note that, for any game state S , Hi ∪ Ho ∪ D ∪ U =
{A♠ , 2♠ , . . . ,Kq } is the set of all 52 cards in the game.

4.1 Agent Assumptions
We assume that our opponent will never discard cards which
they have chosen to draw face up; that is, we assume that
all known cards in Ho are permanently inaccessible to our
agent, and thus that we can never achieve any melds contain-
ing those cards. A survey of games by human and computer
players could potentially validate or reject this assumption,
were such data available, and future research might seek to
demonstrate using tests whether the removal of this assump-
tion decreases or improves an agent’s win rate.

We also assume that all cards c ∈ U are equally likely to
be drawn; for random variable Γ as the top card of the deck,

P (Γ = c) =
1
|U |

(1)

A more sophisticated agent might alter its expectation of
drawing particular cards based on inferences about the con-
tents of its opponent’s hand based on their behavior; for ex-
ample, noticing that an opponent has picked up both 2q and
2♣ from the face-up pile could reduce the projected proba-
bility of drawing either 2r or 2♠ , as the opponent is likely
to already have one or both of those cards.

When counting the deadwood in a hand, there might be
multiple sets of melds that yield the same deadwood points
for the hand. However, of all the meld sets that derive some
hand’s minimum deadwood points, we choose one arbitrar-
ily for computation assuming no loss of generality. We dis-
cuss the implications of this assumption in Section 6.

Whenever an opponent discards a card, we assume that
they have no intention of forming any melds which would
be improved by that card. Likewise, if the opponent decides
to draw the top card from the deck instead of t, we assume
that the opponent has no intention of forming a meld which
would be improved by t. These assumptions allow us to
quickly prune the potential melds that our opponent could
make, leading to more reasonable predictions when the as-
sumption is accurate. We decided this improvement is worth
the trade-off of inaccurate predictions when our opponent
passes or discards cards that would fit in a meld they are
pursuing—we believe such moments are rare. A more con-
servative agent would need only to prune those melds which
are inaccessible as a result of excluding such cards, leaving
as possibilities those which are improved by those cards but
do not depend on them. Future research might seek to deter-
mine whether such an agent performs better or worse than
one which makes this assumption.

4.2 Choosing What to Draw and Discard
Our agent considers whether to draw the face-up or face-
down card at the same time that it chooses which card to
discard using an evaluation function rt, which computes a
positive real number representing the expected deadwood
value of a given ten-card hand in a particular game state. rt
includes the weighted sum of two functions rm and ro, which
Sections 4.3 and 4.4 respectively describe in detail. dmin(h) is
the minimum amount of deadwood in hand h after removing
its valid melds, and wm and wo are tunable weights.

rt(h) = dmin(h) − wmrm(h) − woro(h) (2)

We first explain how the agent determines the value of
drawing the face-up card in the discard pile. Adding the
face-up card to the agent’s hand yields the set Hi ∪ { t }
of eleven cards. Because the taken face-up card cannot be
discarded on the same turn, the agent only considers the
|Hi| = 10 choices for which card to discard—our agent
ignores the case of drawing and discarding the deck’s top
face-down card during this stage of the computation. For
each of the ten possible ten-card hands resulting from dis-
carding a card, our agent runs the hand evaluation function
in Equation 2 above to score them. This takes into account
the deadwood of the hand, the potential for a hand to create
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new melds, and the potential for a hand to disrupt the oppo-
nent’s play or be laid off onto opponents melds. The agent
then takes the minimum of these scores and assigns it as the
value for the face-up card t. This is because the agent will
choose to discard the card that minimizes the hand evalua-
tion function rt(Hi) after taking t. Mathematically, R(c,Hi)
is the value of Hi after drawing c:

R (c,Hi) = min
x∈Hi
{rt ((Hi ∪ { c }) \ x)} . (3)

The calculation of the value for the face-down card is sim-
ilar, except the drawn card may be discarded:

R′ (c,Hi) = min
x∈(Hi∪{ c })

{rt ((Hi ∪ { c }) \ x)} . (4)

We then take the expected value of this modified function
R′ (c,Hi) over all the cards in U:

R f =
∑
c∈U

P(Γ = c)R′ (c,Hi) =
1
|U |

∑
c∈U

R′ (c,Hi) . (5)

The simplification is true because of our assumption in
Equation 1 that P (Γ = c) is uniformly distributed.

The agent finally compares Rt = R(t,Hi) and R f , choos-
ing the actions that lead to the lower score. If the face-up
card is chosen, the agent draws it, then discards the precom-
puted card associated with the best hand containing the face-
up card. If the face-down card is chosen, the agent decides
which card to discard by evaluating the eleven possible re-
sult hands as in equation 4. As deciding whether to draw the
face-up or face-down card has already computed the best
discard associated with each possible draw in the face-down
pile, our agent’s performance might be improved by caching
those best discards. Instead, we rerun that computation for
the drawn card; as yet, such performance optimizations have
not been a serious concern.

4.3 Myopic Meld Distance
Many hands have the same naı̈ve deadwood value, but given
a particular game state, some hands are worth more than oth-
ers. Consider the following two hands.

2q 6q 7q 9q J♠ JrKr 3♣ 8♣ 9♣ (6)
8qQq 6♠K♠ 2r 9r 7r 5♣ 7♣ J♣ (7)

Both of these hands have 74 deadwood. However,
hand (6) is better because it has many sets of cards that are
almost-melds while hand (7) has almost no almost-melds.
We propose a myopic algorithm to choose our draw and dis-
card cards based on sets in our own hand that are at most one
card away from becoming a meld.
Definition 3 Let Hi be the set of cards that are in the agent’s
hand. Then an almost-meld is a set Λ ∪ { a }, where Λ ⊂ Hi
and a ∈ U. We call Λ and a the root and affix of the almost-
meld, respectively.

With this definition, assuming D = Ho = ∅, we can see
that hand (6) has the following ten almost-melds:

{ 6q , 7q , 8q } , { 6q , 7q , 8q , 9q } , { 5q , 6q , 7q } ,
{ J♠ , Jr , J♣ } , { J♠ , Jr , Jq } , { 8♣ , 9♣ , 10♣ } , (8)
{ 7♣ , 8♣ , 9♣ } , { 9♣ , 9q , 9♠ } , { 9♣ , 9q , 9r } ,
{ Jr ,Qr ,Kr }

and hand (7) has only two almost-melds:

{ 5♣ , 6♣ , 7♣ } , { 7r , 8r , 9r } . (9)

Let us inspect one of the almost-melds from hand (6):
{ J♠ , Jr , J♣ }. We can partition this almost-meld into the
root Λ = { J♠ , Jr } ⊂ Hi and the affix a = J♣ ∈ U.

Using this fact, we can now evaluate each hand to better
represent its potential to improve. Our evaluation function
begins with the deadwood of a hand, and then it reduces this
value for hands with better potential. We construct a map
where the keys are the cards in the agent’s hand c ∈ Hi, and
the values V (c,Hi) are the set of possible affixes for the set
of almost-melds in Hi that contain c.

Continuing our example, Jr maps to value

V (Jr , 2q 6q 7q 9q J♠ JrKr 3♣ 8♣ 9♣ ) = { J♣ , Jq ,Qr }

because the three almost-melds in (8) that contain Jr are
{ J♠ , Jr , J♣ }, { J♠ , Jr , Jq } , and { Jr ,Qr ,Kr }. Thus the
affixes of these almost-melds are J♣ , Jq , and Qr , respec-
tively.

Let WHi be the set of cards already in a complete optimal
meld. We can compute the expected deadwood reduction us-
ing this map via the following formula:

rm =
∑

c∈(Hi\WHi )

∑
a∈V(c,Hi)

P (Γ = a) d (c) (10)

where P (Γ = a) is the probability of drawing a next turn and
d (c) is the deadwood value of c. Using our assumption that
P (a) is uniformly distributed, we can rewrite Equation 10 as

rm =
∑

c∈(Hi\WHi )

|V (c,Hi)|
|U |

d (c) . (11)

rm naı̈vely computes the reduction in deadwood that we
would expect to have after drawing one card. Drawing any
card in V (c,Hi) forms a new meld in the player’s hand,
which would reduce d (c) to 0 because cards in a meld are no
longer scored as part of the hand’s deadwood. This ignores
the fact that certain almost-melds for a single hand may not
be mutually exclusive, introducing double-counting during
expected deadwood reduction.

4.4 Opponent Modeling
Knowing what cards are in the opponent’s hand can be key to
winning a game of Gin Rummy. If we know the melds in the
opponent’s hand, then we can decide which of our cards to
discard that would benefit our opponent the least. The agent
should only discard cards from their hand that will not go
into the opponent’s melds for two reasons:

1. they are very likely to pick up the card, and

2. if the agent is confident that the card will go into an oppo-
nent’s meld, then that card is effectively worth zero dead-
wood if they knock because the agent can lay off the card.

While it is impossible to know all the cards an opponent
has in their hand, our agent can make an informed decision
based on what it knows in the current state of the game.
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First, we want to find the set of all possible cards an op-
ponent could have, including the cards in the agent’s hand
since they must discard one card at the end of their turn:

Cp = Hi ∪ Ho ∪ U. (12)

The agent does not want to discard a card that would poten-
tially meld with the opponent’s hand. Next, we calculate the
set of all possible meld sets Mp with respect to Cp.

To reduce the search space, we take the subset of melds in
Mp that contain at least one card from the agent’s hand:

M1 =
{
M

∣∣∣ M ∈ Mp ∧ (M ∩ Hi , ∅)
}
. (13)

We also reduce the search space to only include melds that
contain at least one card that we know the opponent has:

M2 =
{
M

∣∣∣ M ∈ M1 ∧ (M ∩ Ho , ∅)
}
. (14)

The reductions in Equations 13 and 14 allow us to filter out
melds that the agent cannot affect as well as the melds that
the agent has no evidence to support.

We reduce the search space even further by removing
melds that we assume our opponent will not try to attain,
due to our assumption that an opponent will not try to make
any melds that contain a card they either discarded or chose
not to take from the discard pile. In particular, this additional
pruning applies to three-card sets because all cards have the
same rank; thus the opponent would never forfeit a card of
a desired set’s rank. For example, if the opponent discards
Jr , then the agent should assume that the opponent is not
interested in meld {J♠ , Jq , J♣ } because Jr could join any
pair of cards to form yet another set-type meld.

M3 =
{
M |M ∈ M2∧ (15)

(isS et(M) → (ranks (M) ∩ ranks (Do ∪ Po) = ∅))
}

In the above equation, isS et (M) evaluates to true if and only
if the set of cards M is a set-type of meld, and ranks (M)
abstracts M to the set of ranks for each card in M. Equa-
tion 15 does not prune any melds of the run type because the
set of melds Mp already removed all such melds related to
the above assumption. Discarding Jr means Jr < Cp, and
run-type melds in Mp without Jr are distinct from run-type
melds with the card.

With our final set of melds M3, we compute the deadwood
reduction our opponent would gain for each possible card
that we could discard from Hi.

ro =
∑
c∈Hi

∑
M∈{µ|µ∈M3∧c∈µ }

P(M ∈ Mo) d(c) (16)

where Mo is a random variable for the set of melds in the
opponent’s hand and d(c) calculates the deadwood value of
c. The probability that a meld is in the opponent’s hand is

P(M ∈ Mo) =
∏
c∈M

1 c ∈ Ho
1
|U | c < Ho

. (17)

By design, ro represents the expected score by which the
opponent’s hand would decrease with respect to the ten cards
in the agent’s hand Hi.

4.5 Knocking Strategy

Under the American rules, the gin and undercut bonuses are
both worth 25 points. To us, the penalty for knocking too
early is severe and the reward is small; correctly predict-
ing that it is safe to knock without gin will usually reward
a handful of points, but predicting wrong and being under-
cut gives the opponent one quarter of the threshold to win.
Similarly, the reward for going gin is large enough that, even
when a player is confident that they would win the hand, it is
often worth the risk to play additional turns for the chance to
form melds with last few cards and achieve gin. Specifically,
the risk is the possibility that their opponent will recover and
win first during these additional turns.

For these reasons, we believe that the number of instances
when it is correct to knock without gin forms a negligible
edge case. As such, our agent only knocks when it has gin.
We call this strategy stubborn knocking and compare it to a
strategy that knocks as soon as the player has fewer than ten
deadwood, which we term quick knocking. The latter greed-
ily knocks as soon as possible while the former lazily knocks
once it is not worth waiting any longer.

5 Experiments

To assess the performance of specific features of our agent,
we devised an experimental setup of five agents. Each agent
played in a tournament of 500 games against every agent, in-
cluding itself. We chose n=500 as it yields a sufficient sam-
ple size for hypothesis testing. Each agent has a different
combination of the following components: Stubborn Knock-
ing (SK, Section 4.5), Myopic Meld Distance (MMD, Sec-
tion 4.3), and Opponent Modeling (OM, Section 4.4). Eight
different agents are possible by combining these three com-
ponents, but due to time constraints, only five were tested.
Future work could test all eight combinations. Table 1 com-
pares each agent by their features.

5.1 SIGRA, The SIFT Gin Rummy Agent

The SIFT Gin Rummy Agent (SIGRA) incorporates all three
components: Stubborn Knocking, Myopic Meld Distance,
and Opponent Modeling. The agent calculates the MMD
for Hi as well as the Opponent-Modeled deadwood reduc-
tion for Ho, and then weights them by 0.85 and 1.0 respec-
tively. These weights were determined by an iterative test,
but future work could refine these values. The current dead-
wood value of the agent’s hand subtracts the sum of these
weighted scores, and the hand with the lowest value is cho-
sen. This combination of components results in a strategy
that favors cards that can potentially become part of the op-
ponent’s meld, yet also works to reduce the agent’s own
overall deadwood by making melds if possible. If the agent
cannot, then it chooses a lower-deadwood card. The agent
has a stubborn knocking policy, which means it only knocks
once it has gin in order to try and earn the extra 25 point
knocking bonus, otherwise undercutting the opponent for an
additional 25 point bonus.
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Agent SK MMD OM
SIGRA 3 3 3

StubbornMmd 3 3 7
MmdOpModel 7 3 3
Stubborn 3 7 7
Simple 7 7 7

Table 1: Comparison of Agent Features

Component SE Z-Score P-Value
SK 0.031 4.972 6.613e-7

SK + MMD 0.029 0.477 0.634
SK + MMD + OM 0.028 1.900 0.0575

Table 2: Significance of Incrementally Adding Components

5.2 StubbornMmd
StubbornMmd is SIGRA without the Opponent Modeling
component. The resulting strategy favors cards that will
make melds with the agent’s hand, or else they choose a
lower-deadwood card. Once again, the agent only knocks
once they have gin in order to secure the 25-point knocking
bonus or the 25-point undercut bonus.

5.3 MmdOpModel
MmdOpModel is SIGRA with a quick knocking policy instead
of a stubborn knocking policy. This combination of compo-
nents picks cards that could potentially go into an opponent’s
hand, while prioritizing cards in their own hand second. The
agent knocks as soon as possible in order to get only the
point difference between each player’s hand.

5.4 Stubborn
Stubborn only incorporates the stubborn knocking policy.
They only draw the face-up card if it immediately becomes
part of a meld or creates a new meld. Otherwise, the agent
draws the face-down card. To discard, the agent selects the
highest-ranked unmelded card. These policies create a play
style that neither pays attention to future melds nor to what
the opponent is doing. The agent’s stubborn knocking policy
refrains from knocking until it has gin.

5.5 Simple
Simple is Stubborn with a quick knocking policy instead
of a stubborn knocking policy. We anticipate this agent to
be the least successful in the tournament. The 2020 Gin
Rummy EAAI Undergraduate Research Challenge provides
Simple as a baseline (Neller 2020).

5.6 Results
Table 3 displays the experimental results of the 15 possi-
ble matches between each of the five agents in the tourna-
ment. Take the bottom-left cell as an example. We interpret
it as, “SIGRA beat Simple 74.6% of the time out of the 500
games they played against each other.” Figure 2 visualizes
this information as well. Directed edges v1 → v2 indicate

the domination relation such that agent v1 won the majority
of the games against agent v2. The bottom-left cell from Ta-
ble 3 is represented in Figure 2 as the edge originating from
the node labeled ‘SIGRA’ pointing towards the node labeled
‘Simple’. This illustrates that SIGRA dominated Simple.

Based on Figure 2, we observe that all four agents with
at least one of our three strategic components dominated
Simple. Furthermore, SIGRA dominated all other agents,
but its win rate over StubbornMmd was only 0.51. This re-
sult seems to indicate that both agents are evenly matched
such that the domination relation may evenly balance closer
to 0.5 or potentially flip with more games.

A question that arises from these results is whether adding
certain strategic components significantly changes the win
rates of our agents. Using Simple as the baseline, we hy-
pothesize that incrementally including the SK, MMD, and
then the OM components each improves the win rate. For
a controlled environment, we consider each agent’s 500
matches against Simple that lacks all our components.

To test the inclusion of each component, we want to eval-
uate whether the agent with that component’s performance
against Simple is significantly better than the agent without
that component’s performance against Simple. To do so, we
used a two-sided, two-proportion z-test of significance. We
will treat both instances of 500 games as the two samples
and the win rates from each tournament as the two propor-
tions being compared. The assumptions of this hypothesis
test are satisfied as each game has a randomly generated
deck shuffling, each game starts with a randomly generated
starting hand, and the individual games’ shuffled decks are
independent of one another. The sample size of n = 500
games also greatly improves the likelihood that our win rates
will be normally distributed across repeated samples accord-
ing to the Central Limit Theorem.

For the hypothesis test for the SK component, we evaluate
whether Stubborn’s performance against Simple is signif-
icantly better than Simple’s performance against itself. Let
P1 = 0.678, P2 = 0.524, n1 = 500, and n2 = 500. The
hypotheses for this test are as follows: H0 : P1 = P2 and
HA : P1 , P2. The results of this significance test can be
found in the first row of Table 2. The p-value of this test is
6.613e−7, indicating quite a low probability that we would
randomly observe such a difference in win rates if the null
hypothesis was true. Similarly, we perform significance tests
for the MMD and OM components, the results of which can
again be found in Table 2.

Based on the results in Table 2, there is no evidence that
the MMD component contributes to our agent’s ability to
play Gin Rummy effectively if it already uses the stubborn
knocking strategy. However, when we combine MMD with
OM and SK, there is evidence that our agent is able to play
Gin Rummy better than with SK alone. There is also strong
evidence that using SK instead of quick knocking improves
an agent’s ability to play Gin Rummy.

6 Discussion
In the card game Gin Rummy, there are three main decisions
that an agent makes per turn: deciding which card to draw,
which card to discard, and when to knock. Our proposed
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Simple Stubborn Mmd Stubborn SIGRA
OpModel Mmd

Simple 0.524
Stubborn 0.678 0.508
MmdOpModel 0.674 0.000 0.512
StubbornMmd 0.692 0.524 1.000 0.502
SIGRA 0.746 0.578 0.990 0.510 0.520

Table 3: Triangular matrix of agent win rates. Win rate represents proportion
of games out of 500 that the agent in the left column won against the agent in
the top row.

SIGRA

Simple Stubborn

Stubborn
Mmd

Mmd
OpModel

Figure 2: Graph of tournament re-
sults. Directed edges denote domi-
nation relations, and the edge thick-
ens with respect to win rate.

agent utilizes three components; Myopic Meld Distance,
Opponent Modeling, and Stubborn Knocking; to make de-
cisions on these respective choices. The Myopic Meld Dis-
tance strategy attempts to score hands based on their po-
tential to have melds in the short term. Opponent Modeling
uses the known information in the game in attempts to pre-
dict which melds an opponent may be trying to create. The
stubborn knocking policy only allows our agent to knock
when their hand contains zero deadwood points. By simu-
lating tournaments between agents, we found evidence that
each component plays a role in an agent’s performance.

Ranking each agent according to its performance is a
daunting task, given the limited number of strategies con-
sidered in our tournament’s design. SIGRA, which used all
three components, had the greatest win rate against Simple.
We also saw a significant increase in win rate after adding
the SK component alone. This suggests that the stubborn
knocking policy on its own is responsible for the agent’s im-
provement, but it is more difficult to narrow down the com-
ponent(s) that provided the largest benefit because we did
not consider all agent variations based on the powerset of the
components P{MMD, OM, SK}—future work could evalu-
ate such combinations. Based on the increasing win rate as
more components are included (of which two appear signif-
icant), we believe there is synergy between all three com-
ponents that creates a more robust strategy. Having fewer
components misses complementary strategic benefits.

Although every agent dominated Simple, it was not dom-
inated as badly as MmdOpModel. It appears the combination
of MMD and OM create an inferior agent, but it might be the
case that the use and weights of these components’ evalua-
tion functions depends on the chosen knocking strategy. For
example, OM’s preference for deadwood cards that the op-
ponent wants means that they have options for laying off if
the agent knocks as soon as possible—this backfires against
our current intentions with SK. We hypothesize that an opti-
mal agent would knock without gin when it both is confident
that it has less deadwood than the opponent and believes that
the opponent is close to achieving gin.

We will also consider dynamically adjusting the weights
of our components based on the state of the game. Changing
the weights of evaluation functions effectively changes our
agent’s strategy. Finding the optimal weights throughout a

game would thus help the agent perform as well as it can.
It might even be possible to personalize these weights per
opponent, adapting the agent’s strategy during each round
of the game. Furthermore, the weights could be changed
throughout the tournament, using safer strategies in the first
few games and then resorting to more dangerous (but higher
reward) strategies if the agent falls behind.

Under the US rules, a stubborn knocking strategy im-
proves our agent’s performance. However, the UK rules
award fewer points for achieving gin (20) and the undercut
bonus (10); it is worth studying if this affects our agent’s per-
formance with its reliance on the American rule’s 25 points
for both. In the future, we also intend to explore how effec-
tive our agent’s strategies are against a wider variety of op-
ponent strategies. Besides playing AI-driven agents, we wish
to investigate how it plays against humans. This extends be-
yond performance evaluation and into human perception of
our agent; would people feel like it is playing “naturally?”

We are further interested in measuring the win rate be-
tween two agents, the number of times that each agent
knocked, and their scores per round. Does an agent that
consistently knocks first, but only earns a handful of points
each round outperform an agent that waits until they have
gin? What about an agent that only tries to get the under-
cut bonus? In these two situations, we might see a dispro-
portionate number of knocks and scores. The correlation
between these variables could help design more effective
strategies for future Gin Rummy-playing agents.

We also plan to consider the cases we omitted via our as-
sumptions in Section 4.1. One assumption worth addressing
is when there are multiple ways to optimally assign cards
to melds in a given hand. We assumed these situations were
rare with minuscule impact, but distinguishing between two
different meld sets that have the same immediate deadwood
value and different strategic value would be an interesting
addition to the theory of Gin Rummy-playing AI.
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