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Abstract

We perform an empirical study of Gin Rummy knock-
ing strategies, drawing insight from a population of AI
players that vary in both discarding and knocking strate-
gies. For our best performing player, simple linear re-
gression yielded a knocking strategy that both affirmed
the features expert players give attention to in making
knock decisions, and yet called into question the way
such features are conventionally used.

Introduction
In this paper, we will perform an empirical study focusing
on knocking strategies for the game of Gin Rummy. We
begin with the rules and terminology of Gin Rummy and
survey the conventional wisdom for knocking decisions in
Gin Rummy literature. Next, we discuss the two dimensions
along which we vary our AI players, discard strategy and
knocking strategy, overviewing the features we considered
in applying linear regression for predicting the relative qual-
ity of knock decisions. After describing our experimental de-
sign, we share and discuss our experimental results, giving
special attention to what those results suggest about the qual-
ity of conventional wisdom. Finally, we conclude by not-
ing limitations of our study, suggesting directions for future
work, and summarizing our contributions.

Gin Rummy
Gin Rummy is one of the most popular 2-player card games
played with a standard (a.k.a. French) 52-card deck. Ranks
run from aces low to kings high. The object of the game is to
be the first player to score 100 or more points accumulated
through the scoring of individual hands.

The play of Gin Rummy, as with other games in the
Rummy family, is to collect sets of cards called melds. There
are two types of melds: “sets” and “runs”. A set is 3 or 4
cards of the same rank, e.g. 3C-3H-3S, or KC-KH-KS-KD.
A run is 3 or more cards of the same suit in sequence, e.g.
5C-6C-7C, or 9H-TH-JH-QH-KH. Melds are disjoint, i.e. do
not share cards.

Cards not in melds are referred to as deadwood. Cards
have associated point values with aces being 1 point, face
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cards being 10 points, and other number cards having points
according to their number. Deadwood points are the sum of
card points from all deadwood cards. Players play so as to
reduce their deadwood points.

For each hand of a game, the dealer1 deals 10 cards to
each player. After the deal, the remaining 32 cards are placed
face-down to form a draw pile, and the top card is turned
face-up next to the draw pile to start the face-up discard pile.
The top of the discard pile is called the upcard.

In a normal turn, a player draws a card, either the upcard
or the top of the draw pile, and then discards a card. The
player may not discard a drawn upcard but may discard a
card drawn face-down. For the first turn, play starts with the
non-dealer having the option to take the first turn by drawing
the upcard. If the non-dealer declines this option, the dealer
is given the option. If both decline, the non-dealer must take
the first turn drawing from the draw pile.

In the event that the hand has not ended after a turn with
only 2 cards remaining in the draw pile, nothing is scored,
all cards are shuffled, and the hand is replayed with the same
dealer.

After a player has discarded, if that player’s hand has 10
or fewer deadwood points, that player may knock, i.e. end
the hand. (Often this is indicated by discarding face-down.)
The hand is then scored as follows: The knocking player
displays melds and any deadwood. Next, if any deadwood
was displayed, the non-knocking player may lay off cards,
adding to the knocking player’s melds so as to reduce the
non-knocking player’s deadwood. Then, the non-knocking
player displays melds and any remaining deadwood.

If the knocking player had no deadwood, they score a
25-point gin bonus plus any opponent deadwood points. If
the knocking player had less deadwood than their opponent,
they score the difference between the two deadwood totals.
Otherwise, if the knocking player had greater than or equal
to their opponent’s deadwood points, the opponent scores a
25-point undercut bonus plus the difference between the two
deadwood totals.

A player scoring a total of 100 or more points wins the
game.

1There are different systems for deciding the next dealer; we
will simply start with a random dealer and alternate players as
dealer across the entire game.
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Conventional Wisdom
Generally, the earlier on in the game, the better off one is to
knock. Shankar advises that with fewer than ten cards dis-
carded, it is advisable to knock as soon as one can (Shankar
2015, p. 32). With so many cards available in the stock, the
chances of acquiring the card(s) you would need for gin are
minimal. Waiting for these card(s) gives the opponent more
time to craft a better hand, minimizing their own deadwood
and possibly ending up undercutting or ginning.

This same logic can be applied when there are greater than
twenty discards, in which case holding out for gin is wiser.
In this case, you have a greater chance of drawing the cards
you need, and the opponent’s hand has most likely devel-
oped to a point where it can only be marginally improved by
subsequent draws.

In the literature we surveyed, the most important factor for
determining if one should knock is the number of gin hits,
or as Shankar calls it, the gin rating, defined as the number
of cards that could be drawn to immediately yield gin. For
example, if a player had a hand of 2H, 3H, 4H, 2C, 2D,
2S, JS, QS, KS, 8D, they would have a gin rating of 3, as
one of AH, 5H, or TS would need to be drawn to go gin. A
hand that requires more than one card/turn to go gin has a
gin rating of 0. Cohen advises that gin should be played out
in most circumstances when there are either 7 or 9 melded
cards, because in these situations the gin ratings tend to be
higher (Cohen 1973, p. 115). Shankar advises at least a four-
way hit before going for gin.

Crawford writes, “When in doubt—knock. Play for gin
only if you have an excellent chance or if you strongly sus-
pect that you will lose if you knock. . . . The only time to con-
sider playing for gin is when you have seven or nine cards
matched (except when you don’t dare knock because you
may be undercut). . . . As a general rule, with four or more
gin chances and nine cards matched, play for gin. With only
two chances, knock. With three chances, use your judgment
. . . ” (Crawford 1961, p. 125-127)

Steig writes of the late turns (“after the fifth”), “If an un-
dercut is not certain, the best policy is usually to knock at
the first opportunity. . . . Holding a one-pick hand with four
or more live chances for Gin, try for it if you have reason to
believe a knock short of Gin will be undercut.” (Steig 1971,
p. 98-100)

Fry writes, “Despite the name of the game, going for Gin
and gunning for the 25-point bonus is only a secondary or
incidental objective. . . . don’t go for it unless your hand is
such that you are forced to such a course of action, or unless
it is late in the hand and you know your opponent is down
very low and waiting to undercut you.” (Fry 1978, p. 6)

Cohen, Shankar, Crawford, Steig, and Fry agree to many
nuances regarding going gin, especially if there is much
known information about the opponent’s hand or playstyle
which could be exploited. Some of these nuances include
knowledge of aggressive or defensive play of the opponent,
knowledge that the opponent tends to knock early or go for
an undercut, and the number of turns that have been played.
In any case, various standards used by experts when decid-
ing whether to knock have some form of gin rating as the

core principle around which the strategy is built, with the
general consensus being a gin rating of at least 4.

Correctly deciding whether to knock or go gin is essen-
tial to skillful play. Well-informed decisions can decrease or
increase the probabilities of being undercut or scoring gin,
respectively. This can amount to a 50 point or more swing in
one’s favor in a race for 100 points.

Algorithmic Approaches
To learn a more effective knocking policy in Gin
Rummy, we began with the Gin Rummy EAAI Under-
graduate Research Challenge code base2 and extended
the behavior of the SimpleGinRummyPlayer along
two dimensions: discard policy and knock policy. The
SimpleGinRummyPlayer class implements a strategy
that discards to maximally reduce deadwood, draws the up-
card only when it creates a new meld or adds to an existing
one, and knocks as soon as possible. We will refer to this as
the Simple Player.

Due to the strategic deficiencies of this player, we cre-
ated another player, which we will refer to as the Hits-
Deadwood-Turn player (HDT player), whose discard de-
cisions were based on a function consisting of deadwood
points and hit count (e.g. the number of possible draws that
could create a new meld or add to an existing one) being
scaled by the total turns taken and respective constants. To
do this, we created functions for determining the values of
these variables on every turn of the game, starting on turn 0,
and then used this data to evaluate our function. One turn is
counted as a player’s combined draw and discard decision,
or in the case of the beginning of the game, a player’s deci-
sion to decline the face up card.

Starting with the Simple Player, we used the existing vari-
ables and class framework to have a starting player from
which we modified the discard decisions. By simulating
many games and hand-tuning coefficients, we decided on
a simple heuristic function scoring states after discarding
based on the hit count, the deadwood, and the turn number.
The heuristic score is calculated as follows:

score = −deadwood− 1.6 ∗ deadwood ∗ turn
10

+
3.6 ∗ hitCount ∗ (15− turn)

15
(1)

Instead of choosing the discard that would leave the hand
with the least deadwood, i.e. the Simple Player strategy, the
HDT player discards so as to maximize the heuristic score.
This player makes plays more akin to human plays with
management of melds and weighting of priorities based on
the turn.

Any player can be made from a combination of draw-
ing, discarding, and knocking decisions. Each of our players
share the same draw decision, which is to draw the upcard
only when it creates or adds to an existing meld. The two
different discard decisions that we have outlined are as fol-
lows:

2http://cs.gettysburg.edu/∼tneller/games/ginrummy/eaai/
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1. Simple: This player discards to reduce deadwood.
2. HDT: Discard decisions are based upon the HDT heuris-

tic as described above.
The different knocking policies are as follows:

1. Go Gin: This player only knocks with no deadwood.
2. First Knock: This player knocks at the first possible op-

portunity.
3. Regression: This player knocks if this expression is pos-

itive:

25.878− 0.152 ∗ deadwood2 − 1.148 ∗ turn total

− 1.202 ∗ gin rating2 (2)

Data collection for this regression is based on the HDT
Go Gin player playing against itself for 10,000 games.
Discussion of these regression features is given later in
this section.

4. Regression (Simple Data): This player knocks if this ex-
pression is positive:

22.115− 0.151 ∗ deadwood2 − 1.017 ∗ turn total

− 0.995 ∗ gin rating2 (3)

Data collection for this knocking regression is based on
the Simple Go Gin player playing against itself for 10,000
games.

5. Rule-Based: Knocking decisions are based on the follow-
ing hard-coded rule-based approach. The player will go
for gin when the turn total is greater than 7, the player
has at least 2 hit cards, and one of the following is true:
the player has 3 or more hit cards, 1 unmelded card, or
fewer than 3 unmelded cards with less than 6 deadwood.
Otherwise this player will knock as soon as possible.

6. Wisdom: Knocking decisions are based on the follow-
ing rules, collected from the conventional wisdom section.
The player will go for gin when the turn total is greater
than 9, the player has at least 4 gin hits, and the player
has either 7 or 9 melded cards. Otherwise the player will
knock as soon as possible.

The HDT and Simple Go Gin Players were used for data
collection because this allowed for as long of a game as pos-
sible, so that we could collect a greater sample of the state
space.

The players we used for experimentation were cre-
ated from combinations of aforementioned discarding and
knocking strategies.

The core idea of our knocking regression rests on the
method of data collection we used, in which we compared
various game states with what would happen if the hand was
played out without knocking, including only the turns where
the player had 10 or fewer deadwood points. The key fea-
ture, which we call the knock difference, is the difference
between the scores of the given state had the player knocked
then and the outcome had the player gone for gin. By using
the knock difference as a dependent variable in a regression,
we proceeded to make a linear regression, which could be

used to determine if the player should knock if the regres-
sion’s expected difference between first-knocking score and
attempted-ginning score is positive.

In order to create a successful regression, we tried many
logical combinations of features according to the ideas of
preexisting conventional wisdom. These features included
gin rating, turns taken, deadwood, hit count, the number of
upcards the opponent has drawn, the number of sets, the
number of runs, and the number of known lay off cards a
player currently has. We started with gin rating and turn
total as the only two features in our regression. From here
we added new features to the regression one by one, noting
both the performance of the resulting player, and the weights
(size of constant) for each individual feature. The inclusion
of deadwood increased the performance of our player. The
inclusion of all other features we tested were detrimental to
this player’s overall performance. Thus the features that we
decided upon for the regression were deadwood count, turns
taken, and gin rating.

Interestingly, deadwood and gin rating contributed to bet-
ter player performance when they were squared. While we
were looking at the graph for gin rating versus knock dif-
ference isolated from the rest of the regression (Figure 1),
we noted that the correlation looked like it was slightly
nonlinear, with the higher gin rating values indicating a
much greater likelihood of gaining more points by going
gin. While further investigation found that a linear regres-
sion seemed to suit the data better, the play of the player
improved by squaring the terms, so we kept these changes.
This was not observed to be true with turns taken; a linear
regression both fit the data better and led to better player
performance.

One concern we had was that a different regression other
than a linear regression would work better at fitting the data,
so we tried out a quadratic regression by running our linear
regression on the features, the features squared, and the 3
combinations of the features. This strategy, however, yielded
a player with poorer performance, so we concluded that se-
lective use of squared terms yielded better play performance.

Experimental Design
To compare the performance of the different players, we
played each of them against every other player for 10,000
games, collecting the results into Table 1. The table of play-
ers is ordered by average number of wins, ordered from
highest to lowest.

Our main method for determining statistical significance
is the Wilson confidence interval, processed with the num-
ber of wins out of 10,000 games between two players. For
every pair of players in Table 1, the one with the higher win
rate according to the collected data will, with 99% Wilson
interval confidence, win more than 50% of the games. Thus
each entry in Table 1 is statistically significant. This Wilson
interval was also used in determining statistical significance
during feature selection. As noted in the Algorithmic Ap-
proaches section, we tried many different logical combina-
tions of features to make our regression, using the Wilson
confidence interval as our standard for determining better
play.
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HDT Reg HDT RB Sim Reg (Sim) HDT GG Sim Reg Sim GG HDT Wisdom HDT FK Sim FK
HDT Reg - 53.7 57.9 59.6 61.4 64.8 57.5 59.3 70.2
HDT RB 46.3 - 52.8 54.9 56.9 58.2 59.2 62.6 72.3

Sim Reg(Sim) 42.1 47.3 - 54.2 53.0 57.8 50.3 52.5 64.0
HDT GG 40.4 45.1 45.8 - 52.3 52.2 59.7 63.5 73.5
Sim Reg 38.6 43.1 47.0 47.7 - 52.7 49.3 51.5 63.3
Sim GG 35.3 41.8 42.2 47.8 47.3 - 53.2 55.8 68.0

HDT Wisdom 42.5 40.8 49.7 40.3 50.7 46.8 - 52.1 62.4
HDT FK 40.7 37.4 47.6 36.5 48.5 44.2 47.9 - 60.6
Sim FK 29.8 27.7 36.0 26.5 36.7 32.0 37.6 39.4 -

Table 1: Win rates from 10,000 games.

Figure 1: Graph of Gin Rating vs Knock Difference with one
percent Gaussian jitter. Means are graphed in orange.

We also collected feature data with the HDT Regres-
sion, HDT Rule-Based, HDT Widsom, Simple Regression
(Simple Data), and Simple Regression players against the
HDT Rule-Based player for 10,000 games. These five play-
ers were chosen because they are the only ones that make
a game-state-dependent decision about whether to knock or
not, whereas the other players either knock as soon as pos-
sible or go for gin. The HDT Rule-Based player was chosen
as the opponent to provide a standard, well-rounded player
for feature data collection.

We recorded how many times each player knocked at the
first given opportunity, and how many times they did not,
an indication that they are playing for gin. Note that if the
player has gin at the first knocking opportunity, this counts
as an attempt to play for gin. This is given by the ratio
“Knock % Without Gin” in Table 2. We then recorded each
of the three features in our regression at the first opportu-
nity the player could have knocked, regardless of whether
they did or not. The averages for the features when they

played for gin and did not play for gin are shown in Table
2. This data was collected to analyze the difference between
the players in the situations where they knocked or didn’t
knock.

Results and Discussion
Table 1 shows the win rate of each player against every other
player for 10,000 games, and is ordered from best to worst
player based on the number of winning matchups, with ties
being broken by highest average win rate. The Simple Re-
gression, HDT Wisdom, and Simple Go Gin players are all
tied with three winning matchups because of their cyclical
dominance relationships against each other: the Simple Re-
gression player beats the Simple Go Gin player, the Simple
Go Gin player beats the HDT Wisdom player, and the HDT
Wisdom player beats the Simple Regression player. It makes
sense that the Simple Regression player beats the Simple Go
Gin player, because the regression selectively goes gin only
when it perceives it to be beneficial, and it makes sense that
the Simple Regression loses to the HDT Wisdom player, be-
cause the different knocking strategies are not enough to ac-
count for the performance difference caused by the HDT and
Simple discard strategies. We conjecture that the HDT Wis-
dom player loses to the Simple Go Gin player because it is
too selective when going for gin, as described later.

Except for this situation, we observe transitivity in the
performance ranking between players, because all other val-
ues are above 50% with statistical significance above the
main diagonal. We also note that win rates against any player
are not monotonic with player rank.

For example, against the two First Knocking players, one
might expect that the highest tier player (the HDT Regres-
sion player) would have the highest win rate against them.
However, in both cases, the HDT Go Gin and HDT Rule-
Based players outperform the top player, with the HDT Go
Gin taking the highest win rate, the HDT Rule-Based taking
second highest, and the HDT Regression taking third. The
conclusion that this suggests is that certain types of play-
ers have certain weaknesses in their strategy, and the best
response to a First Knocking player is to always go for the
undercut. We conjecture that this is the case because a First
Knocking player is susceptible to undercuts; knocking early
usually means less developed hands and therefore higher
deadwood points. Chances of undercutting against the First
Knock are greater later in the game when the opponent has
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Averages when not playing for gin Averages when playing for gin
Knock % Without Gin Deadwood Turn Gin Rating Deadwood Turn Gin Rating

HDT Reg .44 6.56 9.24 .89 6.60 15.62 1.57
HDT RB .34 7.27 9.91 .97 6.50 14.33 1.48

HDT Wisdom .95 6.71 12.77 1.11 3.65 14.36 4.24
Sim Reg (Sim Data) .30 6.37 8.81 .92 7.01 15.93 1.46

Sim Reg .20 6.56 13.51 .05 6.90 13.99 1.60

Table 2: Average of game state features for different players collected at first knocking opportunity for 10,000 games.

more time to develop their hand and minimize their own
deadwood. Because the Go Gin and the Rule-Based players
both play for gin more than the HDT Regression player, they
are able to exploit this weakness of the First Knock player
the most, and have a better win rate as a result. The HDT
Regression player wins against the Rule-Based player be-
cause it is more selective in when it goes for gin, as shown
by greater percentage of times knocked in Table 2. Thus,
while the HDT Regression player has more winning match-
ups than the Rule-Based player, the Rule-Based player per-
forms better against the First Knocking players.

We also presume that HDT Wisdom player’s poor perfor-
mance can be attributed to its highly selective criteria for
attempting gin. Table 2 shows that the HDT Wisdom player
knocks without gin 95% of the time, which is significantly
higher than the other regression or rule-based players. This
is because the player has the opportunity to knock before the
three conditions for going gin can be met. Therefore it plays
very much like, but slightly better than, the First Knocking
players, which explains its similar win rate to the HDT First
Knock player, and its losses to the Go Gin players, which
take advantage of its proclivity to knock early.

The purpose of including the Simple Regression player
trained on the HDT data was to test whether a one-size-fits-
all regression could work given different playstyles, in this
case the Simple versus the HDT. As displayed by the win av-
erages and the poorer performance of the Simple player than
with the HDT data, tailoring the data to the player clearly
has a significant impact on the win rate. This means that
good knocking policy has the definite input of how well both
players play and some insight on how they play, as this influ-
ences features like the length of the game, the gin rating, and
cards that the opponent could be stashing to keep the player
from gin.

One feature that we didn’t include in our regression, but
strongly considered, was the number of face up cards the
opponent has drawn. While this is somewhat accounted for
in the gin rating by removing gin hits currently blocked by
the opponent, the number of face up cards the opponent has
picked up can give an idea of how developed the opponent’s
hand is, thus influencing the knock decision. Unsurprisingly,
the HDT Regression player with the existing features and
this new feature did slightly better than the HDT Regres-
sion player with just the existing features. However, in all
other matchups, the overall performance decreased, leading
us to conclude that our original HDT Regression player has
a more balanced regression for the comparison player pop-
ulation. Of course, there is the possibility that this feature is

much more useful in high level play, and would work better
against a more skillful population.

The most interesting result from this study was how much
of a difference knocking policy makes in a player’s rel-
ative performance. In each of the matches between play-
ers with identical knocking policy and different mid-game
playstyles, the HDT players come out on top. With the HDT
First Knock player versus the Simple First Knock player, the
HDT player has a 60.59% win rate. However, despite the
difference in strategy during the early/mid game, knocking
policy plays the biggest factor in determining performance
in the table of win results. As expected, the HDT Regression
is the best knocking strategy, followed by the rule-based ap-
proach, then the go gin strategy, and lastly the first knocking
policy.

If we were to apply the results here to human play, there
are a few key takeaways to improve performance. Firstly,
noting how much results changed in matchups against the
First Knock player, we can see that one should note oppo-
nent knocking habits, and if they are knocking early con-
sistently, it would probably be a good idea to simply never
knock unless you have gin. Additionally, given the results in
Table 2, the better policy seems to be to go gin selectively,
usually when there is more than 1 gin hit. Lastly, as seen by
the large discrepancy between the turn averages in Table 2,
it can be inferred that the number of turns heavily affects
knocking policy, showing that if one can knock early, i.e.
before turn 10, one should probably do so.

Comparison to Conventional Wisdom
Overall, our results indicate that many of the general ideas
expressed in the conventional wisdom section were correct.
However, there are a few claims that seem to be either incor-
rect or lacking in explicit specification.

First of all, just crafting a player to the knocking specifi-
cations of the conventional wisdom section leads to a player
that does not play well against our players. This player that
we made would go for gin if the turns taken was greater than
9, the gin rating was greater than or equal to 4, and the num-
ber of melded cards was 7 or 9, given same draw/discard
decisions. This player had a 40.8% winrate against our HDT
Rule-Based player and a 42.5% winrate against the HDT
Regression player. Thus, the conventional wisdom does not
seem to predict well when a person should go gin.

One claim that was mentioned several times was that go-
ing for gin is much more promising if one has 7 or 9 melded
cards as opposed to 6 or 8 melded cards, which tend to have
lower gin ratings. By collecting data at the point where the

15604



regression player could first knock, we found that our HDT
Regression player knocks 54.0% of the time when it has 6
or 8 melded cards and 39.2% of the time when it has 7 or
9 melded cards. This makes sense and supports the conven-
tional wisdom, which says that 7 or 9 melded cards is prefer-
able.

However, it should be noted that the regression player
still goes for gin 46.0% of the time with 6 or 8 melded,
so it appears that the conventional wisdom over-discourages
promising gin plays with 6 or 8 melded cards. It is more ac-
curate to say that there is a higher average gin rating among
hands with 7 or 9 melded cards, leading to a greater number
of hands where it is desirous to go for gin with 7 or 9 melded
cards. The average gin rating for 6 or 8 melded cards is .13
as opposed to an average rating of 2.07 for 7 or 9 melded
cards. This shows that our player probably goes for gin with
6 or 8 cards because of a late turn and probability of an un-
dercut. It seems that there are still good incentives for going
gin much of the time with 6 or 8 melded cards.

One claim that seems to be correct is the turn on which
one should knock. The conventional wisdom states that be-
fore the 10th turn, one should knock, and the data in Table 2
corroborates this; the two best players, the HDT Regression
and HDT Rule-Based players, both seem to have an average
knocking turn of around 9, which means that the turns on
which they knock are likely under or around 10, strikingly
close to the conventional advice.

One claim that seems to be incorrect is the gin rating re-
quired to try for gin. The HDT Regression player, which is
the best player we have, has an average gin rating of around
1.57 when it goes for gin, which is far from the suggested
gin rating of 4. This player goes for gin 56% of the time,
much more often than conventional wisdom would advise.
The players in Table 2 are not optimal, but the large discrep-
ancy in gin rating when knocking between the HDT Wis-
dom player and the others raises the question of whether the
experts are correct in their assumptions. Additionally, the
stipulation that the HDT Wisdom player cannot go for gin
without at least a gin rating of four can account for its poor
performance.

Conventional wisdom has its focus on good features, but
our empirical study recommends different use of such fea-
tures. As with most expert strategies, there is probably room
for improvement in some areas, one of which might be the
gin rating at which one should go gin. While wisdom from
experts is hard to come by because decisions in the game are
very situational and nuanced, this play data suggests that a
better strategy for at least a newer player is to go gin more of-
ten, maybe settling for a gin rating of 2 on turns later than 10.
In any case, good play will consist in part of consideration of
gin rating and turns taken, with deadwood being a variable
not touched on by the books, and a variable probably in-
volved in situational tie-breaker decisions. These books give
a short analysis of knocking decisions that is not bad, but
probably could be improved on significantly with further re-
search.

Future Work
As shown with the inclusion of the Simple player with the
HDT Regression data, the regression quality depends partly
on the player that generates such play data. This means that
better players yield better knocking policies, and as progres-
sively better players converge to optimal play, so too will
knocking policy.

Indeed, one limitation of this work is that it is conducted
within a limited population of strategies. While it is clear
that conventional wisdom does not work well in this pop-
ulation of players, it remains to be seen how conventional
wisdom varies from optimal knocking play in the context of
optimal Gin Rummy play of both players.

Another interesting research direction involves incorpo-
rating the other features we mentioned but did not use in
our final regression. Features like the number of upcards
drawn by the opponent, the number of sets, and the number
of runs all seemed to have a positive impact on the quality
of the player against the best regression, but the overall play
against other types of AI suffered as a result. These features
might be excellent for situational matchups, or they might
be more applicable against better AI. Another feature or line
of features that could be added regards hand estimation, e.g.
how far the opponent’s hand has developed.

Even our best player, being based on a high-bias regres-
sion, can only make decisions of limited complexity, and
thus can only reach a certain threshold of good play. There
are, however, numerous other approaches to model-building
and machine learning that could yield better play perfor-
mance. Some of these might include gradient boosted ma-
chines, neural networks, or any other regression that could
unravel more intricate relationships between different fea-
tures, especially if more were to be included in the regres-
sion.

In this work, we develop a deterministic policy with a
focus on knocking decisions. We would expect that opti-
mal knocking policy would be a mixed strategy, i.e. knock-
ing some fraction of the time in some cases so as to con-
ceal information across many hands. Further, we expect
that, as with other games, a suboptimal opponent may be
exploited by one’s knocking strategy. Knowing that the
SimpleGinRummyPlayer knocks at the first opportu-
nity, for example, informs us that we will less likely be un-
dercut when knocking and that we can, in turn, have more
opportunities to undercut since the deadwood distribution of
the SimpleGinRummyPlayer will skew higher from its
strategy.

Future work might not only include computation of opti-
mal knocking strategy, but also the detection of suboptimal-
ity in opponent knocking and the adjustment of knocking
strategy to exploit such suboptimality.

Conclusion
In this paper, we constructed a population of varied discard
and knock strategies for the purpose of gaining insight to
improved knocking strategy. We were especially interested
in how these strategies compared to conventional wisdom in
Gin Rummy literature.
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The best player of our population of players, HDT Re-
gression, made use of the most important features of con-
ventional knocking strategy, yet made significantly different
use of such features, suggesting that conventional wisdom
may overly discourage attempts at a gin bonus in common
situations where one has 6 or 8 melded cards or a gin rating
less than 4.

Our HDT regression player plays as follows: It draws the
upcard only when it creates or extends a meld, discards so as
to maximize score (1), and knocks when score (2) is positive.
We do not claim this deterministic player as optimal, and
expect that optimal knocking policy would vary and present
mixed strategies in some situations. Nonetheless, we believe
that this empirical study suggests that the decision to knock
should be more nuanced and less frequent than conventional
wisdom dictates.
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