
Opponent Hand Estimation in Gin Rummy Using Deep Neural Networks and
Heuristic Strategies

Bhaskar Mishra,1 Ashish Aggarwal2

1Computer & Information Science & Engineering, 2Department of Engineering Education
University of Florida, USA

{bmishra1, ashishjuit}@ufl.edu

Abstract
A vital part of any good strategy for most imperfect-
information games is making predictions about the informa-
tion that is unavailable. For example, in card games like Poker
and Gin Rummy, predicting the kinds of cards the opponent is
holding is necessary for playing well. Specifically, it is useful
for agents to be able to map the partial game states that are
made available to them to the probabilities of each of the pos-
sible complete game states, given that they are playing against
other rational player(s). Finding this relationship, however, is
difficult, as it requires knowledge of how a rational player
would play, which is the problem this relationship is being
used to solve. In this paper, we attempt to find this relation-
ship in the context of the card game Gin Rummy, though in-
stead of predicting the complete game state, we focus on what
is most useful to a player: the opponent’s hand. We do this by
using heuristic utility functions to create an agent that approx-
imates how a rational player would play, and then using the
resulting game data to train a Deep Neural Network mapping
known information to predictions about the opponent’s hand.
This model is used to improve the existing agent and, in turn,
to produce more data to create better models.

Introduction
Imperfect-information games model decision-making situ-
ations involving two or more agents, where agents do not
have access to complete information. Considerable work has
gone into finding solutions for such games. Techniques like
counterfactual regret minimization (CFR) have been used
to find Nash equilibrium strategies for players (Zinkevich
et al. 2008), and various kinds of abstractions have been
used to find approximate solutions to increasingly com-
plex games (Sandholm 2015). In 2016, DeepStack achieved
super-human performance in the game of heads-up no-limit
Texas hold’em, using deep neural networks to approxi-
mate the value of game states and efficiently find approx-
imate Nash equilibria without using the entire game tree
(Moravčı́k et al. 2017). At around the same time, Libratus
achieved super-human performance in the same game, using
an approach called “nested solving” where the agent repeat-
edly solves an increasingly detailed strategy of the portion of
the game that is relevant in real time (Brown and Sandholm
2018).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As of now, the common benchmark that has been used
to test these techniques is the game of Poker, specifically
heads-up Texas hold’em (HTH). Though the specific vari-
ants of HTH have changed – older techniques used heads-
up limit Texas hold’em, but after that was solved in 2015
(Bowling et al. 2015), newer techniques like DeepStack and
Libratus used the much more complex game of heads-up
no-limit Texas hold’em (Moravčı́k et al. 2017; Brown and
Sandholm 2018) – the general structure of the game has not
changed. Relative to a game like Gin Rummy, HTH has a
very small number of unique starting hands, and even when
including the 5 community cards, the number of unique card
combinations is still less than the number of unique starting
hands in Gin Rummy (For an explanation of the primary
rules and terminology of Gin Rummy, please see Appendix
A).

• HTH Starting Hands =
(
52
2

)
= 1326

• HTH Card Combinations =
(
52
2

)
×

(
50
5

)
≈ 2.8× 109

• Gin Rummy Starting Hands =
(
52
10

)
≈ 1.5× 1010

Additionally, in HTH, there are many card combinations that
require very similar strategies and as a result can be bucketed
together without significantly affecting the resulting strat-
egy. This bucketing can reduce the number of information
sets in the abstracted game by several orders of magnitude
(Zinkevich et al. 2008). In Gin Rummy, the strategy seems
very dependent on the specific set of cards a player has, and
there does not seem to be room for such significant state ab-
straction.

The game tree of Gin Rummy also has much greater
depth. Whereas each player makes a maximum of 4 deci-
sions in each of the 4 rounds in each hand of HTH (in each
round, a player chooses either to fold, call, or bet, chooses
what amount to bet if they chose to bet, chooses whether to
reraise, if applicable, and chooses what amount to reraise to
if they chose to reraise), in a single hand of Gin Rummy,
players make 2-3 decisions per turn – where to draw from,
which card to discard, and whether or not to knock, if able
– and there can theoretically be an infinite number of turns
per hand.

These differences make it so that the techniques used to
solve variants of HTH can not be used in an obvious way
to approach a game like Gin Rummy. There would either

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15607



Figure 1: Model Design: A standard feed-forward neural network with two fully connected hidden layers using ReLU activation
functions, and a fully connected output layer using a sigmoid activation function. The inputs and output are made up of 13× 4
matrices, where each element in each matrix represents information regarding one of the 52 cards.

need to be modifications to existing techniques to fit this
context, or new approaches altogether. In this paper, we do
not attempt to “solve” the game of Gin Rummy, but aim
to create an agent that can perform well despite how large
the game tree of Gin Rummy is. In any good Gin Rummy
strategy, and in strategies for most imperfect-information
games, it is important for agents to be able to make pre-
dictions about the information that is unavailable to them. In
Gin Rummy, an agent needs to be able to understand which
cards their opponent is likely to have, given that they are
playing against a rational opponent. We aim to use a Deep
Neural Network to model this relationship, and combine this
model with heuristic-based strategies to create a strong Gin
Rummy agent. Our final agent will be used as our submis-
sion for the EAAI 2021 Gin Rummy Undergraduate Re-
search Challenge.

Model Design
Our goal here is to design a model that can take the complete
information that is available to a player, and use it to deter-
mine the likelihood of each of the possible game states being
the actual game state. For the sake of efficiency, the model
we will be designing will be a simplified version of this idea.
We will instead take only the information that we expect to
be useful as input and focus on making predictions about just
the opponent’s hand, rather than the complete game state.
The opponent’s hand seems to be the unknown that a player
would most benefit from knowing, as the player can then
avoid discarding cards that are likely to benefit the oppo-
nent, and know the cards they are more likely to get when
drawing from the deck.

For input, we will be gathering data from the following
five sources:

1. Player’s Hand

2. Discard Pile

3. Cards Opponent Drew from Discard Pile

4. Cards Opponent Chose not to Draw from Discard Pile

5. Cards Opponent Discarded

Suppose that the ranks and suits of cards are each subject
to some strict ordering. The information in (1) and (2) can
be stored in a 13 × 4 matrix where the element at indices
i, j represents information regarding the card with the i’th
rank and the j’th suit. Each element will be set to 1 if the re-
spective card is in the player’s hand,−1 if it is in the discard
pile, and 0 otherwise. The information in (3) can similarly
be stored in a 13 × 4 matrix with each element being set to
0 if the respective card hasn’t been drawn from the discard
pile by the opponent, and otherwise set to the turn in which
the opponent drew the card (1 for their first turn, 2 for their
second turn, and so on). The same approach can be used to
create two more 13 × 4 matrices to store the information in
(4) and (5) respectively.

For output, we will be producing another 13 × 4 matrix
where each element contains the probability of the oppo-
nent’s hand containing the respective card. Though we have
chosen to output only individual probabilities to meet our
time constraints, future iterations of this agent could also
output relative probabilities between cards in order to better
model the probability distribution of the opponent’s hand.
For now, we will act as if the probabilities are independent.

For our network, we will be using a standard feed-forward
neural network. We will take the 208 nodes of input (four
13 × 4 matrices), pass them through two fully connected
layers with 500 nodes each and ReLU activation functions,
and then end with a fully connected layer with 52 nodes and

15608



a sigmoid activation function to produce the output. A dia-
gram for the network architecture can be seen in Figure 1.

Heuristic Based Strategy
With a design for the neural network, the next problem is
generating data to train the network on. The issue is that
generating the data requires knowledge of how a rational
player would play, which is the problem the data is being
used to solve. To approach this problem, we start by creat-
ing approximate rational agents. We create a heuristic-based
strategy that can be tuned using various hyper-parameters
to change the weight of various elements of the strategy.
Specifically, we use the following eight hyper-parameters,
each of which will be explained in following sections.

MELD BONUS COMBINATION BONUS
DEADWOOD BONUS KNOCK BONUS

GIN BONUS OPP UTIL IMPORTANCE
LOW CARD BONUS EMERGENCY BOOSTER

These hyper-parameters are tuned using a combination
of random search and grid search to produce 2-3 well-
performing strategies. The resulting agents are then put
against each other to simulate several games, and at each
turn of each game, the data from the current player and their
opponent’s hand and action history is used to create an en-
try in the dataset. Multiple unique agents are used to avoid
overfitting and ensure the network is able to handle oppo-
nents utilizing strategies it hasn’t seen before.

Heuristic Utility Function
The basis of our heuristic-based strategy is a heuristic util-
ity function that estimates the value of a hand, with hands
with higher values being preferable to hands with lower val-
ues. The utility function is the sum of 3 metrics: average
card utility, the number of melded cards, and a knockability
bonus.

The latter two are relatively straight forward. The number
of melded cards is equal to the number of cards that are part
of a meld in the hand, based on the melding that the agent
chooses. How the agent chooses to meld will be discussed
later. The knockability bonus gives points for a hand that
can be knocked, giving KNOCK BONUS if the hand can
be knocked but can’t be used to go gin, GIN BONUS if the
hand can be used to go gin, and 0 otherwise.

Average card utility is a more complex metric. It assigns
a “card utility” to each unmelded card in the hand based
on the card’s “usefulness” in forming future melds and its
point value, and then measures the average utility of those
cards. The usefulness of a card is measured by looking at
all 3-card melds that both contain the card and are possi-
ble – contain only cards that are neither in the discard pile,
nor already melded in the player’s hand. MELD BONUS
is added to card utility for each such meld, and COMBINA-
TION BONUS is added if the hand contains two of the cards
in the meld. Points are also either added to or subtracted
from card utility based on how low or high the point value
of the card is. The pseudo-code for card utility is roughly as
follows:

CardUtility(card, hand):

utility = 0

for each possible 3-card meld containing card:

utility += MELD_BONUS

if hand contains two of the cards in the meld:

utility += COMBINATION_BONUS

utility += (5 - card point value) * DEADWOOD_BONUS

return utility

The actual card utility function used in our agents dif-
fers in a few ways. First, all points that are added as the
result of a “possible meld” are scaled by the probability
that none of the cards in the meld are part of a meld in
the opponent’s hand. This is because if it is the case that
a card in the meld is part of a meld in the opponent’s hand,
it is unlikely that the card will be discarded, and thus, the
meld is unlikely to be attained. Calculating this probability,
however, requires a prediction about the opponent’s hand.
We get around this by initially using a prediction which as-
signs an equal probability to each card that isn’t either in the
player’s hand or the discard pile, and 0 to all other cards.
Once a model has been trained, its predictions can be used
here instead. Secondly, we add LOW CARD BONUS and
LOW CARD BONUS/2 to the utilities of cards with ranks
A and 2, respectively, as they are cards that are particularly
useful in creating a knock-able hand, and are typically un-
dervalued because they have fewer possible melds. Lastly,
when the player’s hand is one card away from being knock-
able, our agents enter an “emergency” state, where DEAD-
WOOD BONUS is scaled by EMERGENCY BOOSTER.
This is because when the player is very close to knocking, it
becomes more useful to discard cards that contribute higher
amounts to the total deadwood.

Melding
When making decisions, our agents frequently need to know
how they would currently meld any cards in their hand. Usu-
ally, this decision is easy, as there is typically only one pos-
sible melding1 that minimizes the hand’s deadwood value.
Sometimes, however, there are multiple possible meldings
resulting in the minimal deadwood value. In these cases,
we’ve set our agents to pick the melding that results in the
hand with the highest average card utility.

Drawing Strategy
During the drawing phase of Gin Rummy, the player has to
decide to draw from either the discard pile or the stock pile.
If drawing from the discard pile results in the agent’s hand’s
deadwood value decreasing, then the agent always chooses
to draw from the discard pile. When this isn’t the case, the
agent calculates an estimate of the utilities of either action.
For drawing from the discard pile, the agent simulates the
drawing of the respective card, and a reasonable discard ac-
tion. The utility of drawing from the discard pile then be-
comes the utility of holding the resulting hand. The utility
of drawing from the stock pile is calculated similarly, ex-
cept rather than looking at a single card, the agent takes the

1A melding refers to a way that the cards in a hand can be
melded.

15609



weighted average of the values produced for each card that
isn’t already either in the discard pile or the player’s hand,
with the values being weighted based on the probability of
the respective card being in the deck (the complement of the
probability that the opponent’s hand contains the card). The
reasonable discard action is typically set to the unmelded
card that results in the highest hand utility when discarded.
The only exceptions to this are that the agent will always
pick the highest deadwood card in their hand if it results in a
knock-able hand, and if all cards are melded, the agent will
pick any card that ensures all cards are still melded after the
discard. After producing these utilities for both draw actions,
the agent will draw from the pile with the higher associated
utility.

Discard Strategy
When actually choosing a discard, our agents will use a more
sophisticated version of the strategy used to pick a reason-
able discard above. Rather than just looking at the discard
that results in the highest hand utility, the agents also seek to
minimize the opponent’s expected gain in hand utility as a
result of that discard. In order to do this, for each unmelded
card in their hand, our agents use their current prediction
of the opponent’s hand to sample 100 possible hands. For
each hand, the agents will simulate a draw phase for the
opponent, calculating a utility for drawing from the deck
and a utility for drawing the hypothetical discard. The op-
ponent’s expected gain in hand utility for a potential dis-
card is then set to the average gain in utility for the oppo-
nent when they choose to draw from the discard pile rather
than the stock pile, with this gain being set to 0 if the util-
ity of drawing from the stock pile is higher. Each unmelded
card is then assigned a value equal to the difference between
the hypothetical hand utility if that card is discarded, and
OPP UTIL IMPORTANCE times the opponent’s expected
gain in hand utility from that card being discarded. The card
with the highest value is discarded.

As before, the only exceptions to this are that the highest
deadwood card is always discarded if it results in a knock-
able hand, and if all the cards in the hand are melded, any
card that results in a hand that is still completely melded is
discarded.

Knocking Strategy
For this project, we have chosen to focus primarily on de-
veloping the drawing and discard strategy. For the knocking
strategy, our agents choose to knock as soon as the option
is made available to them. This was done to allow the focus
of the work to be on developing this technique for opponent
hand estimation, rather than dealing with the complexities
of a good heuristic-based strategy. Future versions of these
agents could, however, implement a more complex knocking
strategy without affecting the effectiveness of the approach
used in this paper.

Training
Training the model took place in 3 phases. First, 2 agents
using the above strategy were used in combination with the

K 10 15 20 25
TKCA 37.75% 61.47% 79.61% 90.68%

Table 1: Top K Categorical Accuracy (TKCA)

“SimpleGinRummyPlayer” agent provided by the competi-
tion hosts2 to create an initial dataset. Several games were
simulated between each pair of players, creating a total of
approximately 32 million data entries, of which approxi-
mately 4 million involved the “SimpleGinRummyPlayer” as
the opponent, and the remaining 28 million were split evenly
between the two agents using our strategy. This data was
used to train our first model, and the resulting model was
used to create a new agent (this agent was re-tuned to ac-
count for changes in the optimal hyper-parameters due to
the new model). This new agent was then put up against
itself, and the 2 original agents, to create approximately 9
million more data entries. Again, this was used to create a
new agent, which was re-tuned appropriately, and then used
to create another 9 million data entries. The resulting dataset
of roughly 50 million data entries was used to train our final
neural network, which was used to create our final agent.

Using a test set with 1.5 million data entries following
roughly the same distribution of agents used in the training
data, we measured the Top K Categorical Accuracy of our
final model for various K’s, as seen in Table 1. In this con-
text, Top K Categorical Accuracy estimates the probability
that the cards in the opponent’s hand are contained within
the set of K cards with the highest predicted probabilities.
The hyper-parameters for our final agent were as follows:

MELD BONUS = 1.5

COMBINATION BONUS = 4.0

DEADWOOD BONUS = 1.0

KNOCK BONUS = 10

GIN BONUS = 20

OPP UTIL IMPORTANCE = 0.77

LOW CARD BONUS = 0.2

EMERGENCY BOOSTER = 2.5

Performance
Since Gin Rummy is a context in which very little work has
been done, there isn’t any benchmark to compare to, and
as a result, getting a concrete measure of the agent’s perfor-
mance is difficult. In games like Poker, past works have used
regret minimization to find the best response to a particular
strategy, and have used it to measure an agent’s “exploitabil-
ity” (Johanson et al. 2011). This, however, is difficult to do
here because of how large the game tree of Gin Rummy is,
and how much computation our agent requires. Since there
doesn’t seem to be a good metric for measuring performance

2“SimpleGinRummyPlayer” is an agent provided by the hosts
of the Gin Rummy EAAI Undergraduate Research Challenge. It
follows a very basic strategy, drawing cards that contribute to
melds, discarding cards that contribute the most deadwood, and
knocking when possible.

15610



Figure 2: Example Hand

here, we will instead show an example of the agent in play,
utilizing its opponent hand predictions to make better deci-
sions.

Consider a game state where the agent holds the hand
shown in Figure 2 and is currently in the discard phase.
In this circumstance, a naive agent might just discard the
card that results in the highest hand utility. Using our heuris-
tic utility function, the optimal card to discard here would
then be the 8♣with a resulting hand utility of approximately
4.94. The K♠ would be a close second with a resulting hand
utility of approximately 4.88. Our agent, however, would
also take into account the opponent’s previous actions and
the resulting predictions from those actions. In the game that
this hand is taken from, the opponent has just discarded the
K♦. This, along with the rest of the input from the game
state, causes our model to predict that there is only a 9%
chance of the opponent having the K♣ and a 13% chance of
them having the K♥. With the J♠ also being in the agent’s
hand, this means that discarding the K♠ is very unlikely to
help the agent in creating new melds. This is confirmed by
the agent as it calculates the opponent’s expected gain in
hand utility to be approximately 0.05. Conversely, as little to
none of the opponent’s actions suggest that the 8♣ won’t be
useful to the opponent, the agent calculates the opponent’s
expected gain in hand utility from the 8♣ to be approxi-
mately 1.61. As a result of this, our agent assigns a value
of 4.85 to discarding the K♠ and 3.70 to discarding the 8♣.
The agent discards the K♠, maintaining a high hand util-
ity and simultaneously making it difficult for the opponent
to increase theirs. Obviously, this example is not necessar-
ily representative of how our agent generally plays. As more
agents are published for the game of Gin Rummy, a more
concrete estimate of the relative performance of our agent
can be determined.

Though it is difficult to get a measure of the agent’s per-
formance in the context of Gin Rummy as a whole, it is still
useful to see the performance of our final agent relative to
other agents we created. For example, we placed our final
agent against an identical agent that didn’t use the opponent
hand estimation model, and instead predicted an equal prob-
ability for all cards not in the discard pile or the agent’s hand.
Out of a total of 1500 games, our final agent won a total of
855 or 57% of the games. Using a binomial confidence in-
terval, this means that we can say with 95% confidence that
the true rate that our final agent wins against the agent with-
out our opponent hand estimation model is between 54.45%
and 59.52% of the time, and therefore the use of the Deep
Neural Network almost definitely improved the agent’s abil-
ity to win against our existing agents. Our final agent was

also able to beat the “SimpleGinRummyPlayer” agent a to-
tal of 1042 times out of 1500 games, winning approximately
69.5% of the time.

Conclusion
In this paper, we succeed in creating a Gin Rummy agent
that seems to play well. We use heuristic based strategies
with hyper-parameters tuned using a combination of random
search and grid search, and use data generated through sim-
ulation to train a Deep Neural Network that maps known
information in a game state to predictions about the proba-
bilities of the opponent having each respective card. Due to
the lack of existing agents in this context, we are unable to
make a concrete statement regarding the true performance of
our agent in the context of Gin Rummy. Once other agents
are published and a benchmark is formed, a more accurate
measure of the actual strength of our agent and the general-
izability of our opponent hand estimation model can be de-
termined. We do, however, successfully show that the usage
of the Deep Neural Network model does improve our agent’s
ability to win against our existing agents. In a more general
sense, in this paper, we exhibit an example of how Deep
Neural Networks can be used to improve decision-making
strategies in simulated environments by modeling complex
relationships and revealing patterns in simulated data that
would otherwise be difficult to discover and formalize.

Future Work
There are a number of avenues that can be explored in or-
der to improve this agent. First, as knocking strategy wasn’t
significantly studied in this work, a future agent could in-
corporate more complex knocking strategies into the heuris-
tic strategy. Second, whereas our agent designs a model
that only outputs a probability for each card and assumes
the probabilities are independent, a future work could cre-
ate a model that outputs second-order relative probabilities
or even more probability information. Being able to sam-
ple efficiently from these distributions, however, would not
be trivial and would likely be the primary difficulty in us-
ing this approach. Finally, while our agent only takes into
account how much an opponent would immediately benefit
from a card that is discarded, a future agent could simulate
up to a further depth to get a more accurate measure of that
benefit.

Future works could also create entirely new agents, com-
bining the ideas from this paper with the more traditional ap-
proach of counterfactual regret minimization. The heuristic
utility function from this paper could be used to provide an
estimate of the value of any game state, allowing CFR to be
used without traversing the entire game tree. It is also worth-
while to search for ways to modify existing approaches like
those used in DeepStack and Libratus to work under rea-
sonable time in the context of Gin Rummy, allowing good
strategies to be found without game-specific heuristics.

Appendix A - Gin Rummy Rules
Here we will state the primary rules of the card game Gin
Rummy. These rules are taken from the Gin Rummy EAAI

15611



Undergraduate Research Challenge contest page (Neller
2020) and Pagat.com3 (McLeod 2020).

Two-Player Gin Rummy uses a standard 52-card deck
without Jokers, with Aces being low and not being consid-
ered adjacent to Kings in sequence. Each card is assigned a
number of card points, with Aces counting as 1 point, face
cards counting as 10 points, and all other cards counting as
their rank number of points.

The objective of the game is to be the first player to score
100 points from successive hands. The objective of each
hand is to collect cards where most or all of the cards can
be combined into melds and the point value of the remain-
ing unmatched cards is low.

A meld is a set or a run. A set is 3 or 4 cards of the same
rank, e.g. 3♣ - 3♥ - 3♠, or K♣ - K♥ - K♠ - K♦. A run
is 3 or more cards of the same suit in sequence, e.g. 5♣ - 6♣
- 7♣, or 9♥ - 10♥ - J♥ - Q♥ - K♥. A card can belong to
only one meld at a time. If a card can form multiple different
melds with other cards in a hand, the player chooses which
meld to form.

At the beginning of the game, 10 cards are dealt to each
player, and one card is placed face up to start the discard
pile. The remainder of the deck is placed face down to form
the stock pile. The first dealer is chosen at random, and the
dealing player alternates in subsequent hands. During a typ-
ical turn, players will take two actions. They will first draw
a card from either the top of the discard pile or the top of
the stock pile. If they draw from the stock pile, the opponent
does not see the card being drawn. Next, the player com-
pletes their turn by discarding one card from their hand and
placing it face up on the discard pile. If the player drew from
the top of the discard pile during their turn, they may not dis-
card the drawn card.

If, when discarding, the remaining cards in a player’s hand
can be formed into melds such that the total card points of
the unmelded cards, also referred to as “deadwood value,”
is less than or equal to 10, the player can decide to “knock”.
In this case, they discard face down rather than face up, and
then expose their hand to their opponent, arranging the cards
as far as possible into melds. The opponent must then also
reveal their hand, and arrange cards into melds. If either
player has zero unmelded cards, they are referred to as going
gin. If the player that knocked has not gone gin, the oppo-
nent is allowed to lay off any of their unmatched cards by
using them to extend melds laid down by the knocker.

Each player then counts the total value of their unmelded
cards. If the knocker’s count is lower, the knocker scores
the difference between the two counts. If the knocker did
not go gin, and the counts are equal, or the knocker’s count
is greater than that of the opponent, the knocker has been
undercut. In this case, the knocker’s opponent scores the
difference between the counts plus a 25 point bonus. If the
knocker goes gin. then they score a bonus of 25 points, and
can’t be undercut. If both players go gin, then the knocker

3The Gin Rummy rules used in the competition slightly differ
from the rules on Pagat.com. In the competition’s rules, the deal
alternates between players with each hand during a game, and gin
and undercut bonuses are both 25 rather than 20 and 10.

scores just the bonus of 25 points, and the opponent scores
nothing.

Appendix B - Competition Modifications
The agent designed here is being used to compete in the Gin
Rummy EAAI Undergraduate Research Challenge. Though
we simplified some elements of the strategy when creating
the original agent, with our focus being primarily on refin-
ing our approach for opponent-hand estimation, we added
some elements to the strategy of the final agent to improve
its standing in the competition. Specifically, we added more
depth to the knocking strategy of our agent in the following
four ways:

1. Rather than always knocking as soon as the option is
available, if the current prediction of the opponent sug-
gests that the opponent may be close to having a knock-
able hand or may already have a knockable hand, our
agent only knocks if it has a hand with relatively low
deadwood (less than or equal to 6).

2. To accommodate for the above change, when the oppo-
nent’s hand’s deadwood value does seem low, the agent
no longer forces the discard of the highest card in its hand
if it leads to a knock-able hand.

3. If the opponent knocks and the agent’s hand has multiple
possible meldings that minimize deadwood, the agent will
choose the melding that maximizes the amount of dead-
wood it will be able to lay off.

4. If the agent knocks and has multiple possible meldings
that minimize deadwood, the agent will choose the meld-
ing that minimizes the amount of deadwood the opponent
will be able to lay off.

References
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit hold’em poker is solved. Science 347:
145–149.

Brown, N.; and Sandholm, T. 2018. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science 359: 418–424.

Johanson, M.; Waugh, K.; Bowling, M.; and Zinkevich, M.
2011. Accelerating Best Response Calculation in Large Ex-
tensive Games. In Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence - Volume
One, IJCAI’11, 258–265. AAAI Press.

McLeod, J. 2020. Gin Rummy. URL https://www.pagat.
com/rummy/ginrummy.html. Date Accessed: 18 December
2020.

Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356: 508–513.

Neller, T. 2020. Gin Rummy EAAI Undergraduate Re-
search Challenge. URL http://cs.gettysburg.edu/∼tneller/
games/ginrummy/eaai/. Date Accessed: 18 December 2020.

15612



Sandholm, T. 2015. Abstraction for Solving Large
Incomplete-Information Games. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, 4127–4131. AAAI Press.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C.
2008. Regret Minimization in Games with Incomplete In-
formation. In Platt, J. C.; Koller, D.; Singer, Y.; and Roweis,
S. T., eds., Advances in Neural Information Processing Sys-
tems 20, 1729–1736. Curran Associates, Inc.

15613


