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Abstract

My research aims to enable spatiotemporal inference in mo-
bile robot perception systems. Specifically, the proposed the-
sis presents learning-based approaches to the tasks of behav-
ior prediction and occlusion inference that explicitly account
for the associated aleatoric and epistemic uncertainty.

Introduction
To safely navigate complex, dynamic environments, au-
tonomous vehicles (AVs) must anticipate the behaviors of
other agents and make inferences into occluded regions in
the scene, thus informing proactive downstream path plan-
ning. Predicting human behavior in time is difficult due to
(1) the variability in human decision making processes (e.g.,
driver aggressiveness, distracted driving, etc.) and (2) the
rapid evolution of human behavior in time (e.g., interactions
with other drivers). Recent work has successfully used neu-
ral networks to perform temporal predictions both in terms
of continuous (Chai et al. 2019; Salzmann et al. 2020) and
discrete (Itkina, Driggs-Campbell, and Kochenderfer 2019;
Lange, Itkina, and Kochenderfer 2020) representations.

Due to the variability and stochasticity of human be-
haviors, models must account for prediction uncertainty.
Real-world systems are subject to two types of uncertainty:
aleatoric and epistemic. The former results from data un-
certainty (e.g., two equally valid predictions given an in-
put) and is irreducible. The latter arises from (1) how well
the model represents the data and (2) from data distribution
shift (Malinin and Gales 2018). Aleatoric uncertainty can of-
ten be modelled explicitly during training. For instance, for
the trajectory prediction task, parameters for a Gaussian dis-
tribution over the output can be learned (Chai et al. 2019) or
variational approaches can be used to approximate the pre-
diction uncertainty (Salzmann et al. 2020; Itkina et al. 2020).

Spatially, physical sensor limitations cause occlusions,
which result in overly cautious AV behavior. Human drivers,
in contrast, use information gathering and inference tech-
niques based on their observed surroundings to progress in
driving maneuvers despite spatial uncertainty. For instance,
if an observed driver brakes sharply in a neighboring lane,
this may indicate the presence of an occluded obstacle (e.g.,
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a pedestrian) ahead. This occluded obstacle may appear in
the path of the ego driver, causing the ego to act cautiously.
If the observed driver proceeds nominally, a dynamic obsta-
cle is unlikely to be occluded, and the ego may proceed with
lower levels of caution. Learning-based approaches (Afo-
labi et al. 2018; Dequaire et al. 2018; Sun et al. 2019) have
shown success in inferring occupancy within occluded re-
gions from observed driver behaviors. However, they do not
explicitly model the multimodality of the occluded region’s
occupancy, failing to capture the aleatoric uncertainty.

Furthermore, although neural networks are capable of
modeling aleatoric uncertainty, they have been shown to
make unreliable predictions for out-of-distribution (OOD)
inputs (Malinin and Gales 2018; Lee et al. 2018). For AVs,
it is safety critical that the prediction module is able to pro-
vide a level of confidence in its output to a downstream plan-
ner. This level of confidence should encode the epistemic
uncertainty associated with the input relative to the training
set. Existing methods for capturing epistemic uncertainty
within neural networks are often applied to simple classifi-
cation tasks (Sensoy et al. 2020; Malinin and Gales 2018) or
small regression problems (Blundell et al. 2015). Encoding
the epistemic uncertainty for such a complex, multimodal
task as behavior prediction remains an open problem.

The proposed thesis extends AV perception beyond on-
board sensors by making inferences in time and in occluded
regions, while modeling aleatoric and epistemic uncertainty.

Anticipated Contributions
Environment prediction (Itkina, Driggs-Campbell, and
Kochenderfer 2019; Lange, Itkina, and Kochenderfer
2020) We frame the problem of environment prediction in
an urban setting as a video frame prediction task. We vali-
date the capacity of a convolutional long short-term memory
(ConvLSTM) network to predict the environment in time.
We show that a ConvLSTM is able to learn the internal dy-
namic representation of the environment allowing for pre-
diction from static occupancy grid data without additional
dynamic information. We compare the benefits of an evi-
dential occupancy grid to that of a probabilistic alternative.

Sparse multimodal latent spaces for aleatoric uncer-
tainty estimation (Itkina et al. 2020) Prohibitively large
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discrete latent spaces in conditional variational autoencoders
(CVAEs) are required to accurately learn complex data dis-
tributions (e.g., for behavior prediction (Salzmann et al.
2020)) causing computational difficulties for downstream
tasks, such as motion planning or robot information shar-
ing. We present a post hoc method for identifying the subset
of discrete latent classes that is most representative of the
input using evidential theory (Dempster 2008), thus sparsi-
fying the latent space while maintaining distributional mul-
timodality. Our algorithm achieves a significant reduction in
the discrete latent sample space of CVAEs in image gen-
eration and behavior prediction tasks without loss of per-
formance. Our approach outperforms baseline techniques
which collapse the multimodality by removing important
modes with overly-aggressive filtering.

Variational occlusion inference [In Progress] To better
inform occlusion inference, we extend work by Afolabi et al.
(2018) to learn a more expressive model that maps observed
driver behavior to the environment ahead of the driver, thus
capturing interactions between observed drivers and oc-
cluded obstacles. Our proposed approach models the mul-
timodality in the potential mappings using a CVAE, thereby
accounting for the aleatoric uncertainty associated with the
spatial prediction. We introduce a multi-agent fusion mech-
anism using evidential theory (Dempster 2008) for occlu-
sion inference. The mechanism fuses the spatial predictions,
represented as occupancy grids, inferred from multiple ob-
served driver behaviors into the AV’s environment map. We
demonstrate real-time capability of the occlusion inference
algorithm on data collected from a real-world experiment.

Self-aware neural networks for robust behavior predic-
tion [Proposed Work] We propose modeling epistemic
uncertainty for behavior prediction by learning parameters
for higher-order distributions, which are distributions over
sets of distributions (e.g., the Dirichlet is a distribution
over categorical distributions). These methods are efficient
and have demonstrated state-of-the-art results (Malinin and
Gales 2018; Sensoy et al. 2020). We will extend an exist-
ing behavior prediction architecture for continuous (Salz-
mann et al. 2020; Chai et al. 2019) or discrete (Itkina,
Driggs-Campbell, and Kochenderfer 2019; Lange, Itkina,
and Kochenderfer 2020) environment representations to ac-
count for both aleatoric and epistemic uncertainty. The epis-
temic uncertainty may be learned over a discrete latent space
or for the full output prediction, modeling the uncertainty
over a classification or a regression task, respectively.

Since the behavior prediction task is high dimensional and
it is impossible to predict all potential scenarios encountered
on the road, we will not be able to manually select an OOD
dataset for training. We will instead learn OOD data follow-
ing an approach similar to that of Sensoy et al. (2020). OOD
samples will be generated that are close to the training data
in the continuous latent space of a VAE, but far from the
training data in the original data space. This research will
output a behavior prediction architecture that is self-aware
of its prediction confidence, and thus, able to provide rich

information to a downstream planner.
The following is a tentative one year timeline for the pro-

posed work. (Months 1-2) I will implement and train an ex-
isting behavior prediction network that estimates aleatoric
uncertainty. (Months 3-5) The network will be augmented
to model epistemic uncertainty over discrete modes and
trained on publicly available data. Its performance will be
tested using several OOD data variations (e.g., trajectories
generated with adversarial noise, trajectories from highway
versus residential scenes, etc.). (Months 6-7) The proposed
model will be evaluated against existing baselines. (Months
8-12) I will iterate on the method to improve epistemic un-
certainty estimation.
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