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Abstract

The rapid growth of large scale event datasets with timestamps
has given rise to the dynamically evolving multi-relational
knowledge graphs. Temporal reasoning over such data brings
on many challenges and is still not well understood. Most
real-world knowledge graphs are characterized by a long-tail
relation frequency distribution where a significant fraction of
relations occurs only a handful of times. This observation has
given rise to the recent interest in low-shot learning methods
that are able to generalize from only a few examples. The
existing approaches, however, are tailored to static knowledge
graphs and not easily generalized to temporal settings, where
data scarcity poses even bigger problems, due to the occur-
rence of new, previously unseen relations. The goal of my
doctoral research is to introduce new approaches for learn-
ing meaningful representation that capture the dynamics of
temporal knowledge graphs while tackling various existing
challenges such as data scarcity.

Introduction
Large-scale knowledge graphs (KGs) have become a cru-
cial component for performing various Natural Language
Processing (NLP) tasks, including cross-lingual translation,
Q&A, and relational learning. KGs typically suffer from
incompleteness, making automatic KG completion, i.e. pre-
dicting missing links in KG, crucial to avoid the potential
performance degradation in the downstream tasks.

Previous methods of KG completion have traditionally
focused on learning representation over static knowledge
graphs. Due to the rapid growth of temporal event datasets,
there has also been significant recent interest in learning with
Temporal Knowledge Graphs (TKG). The existing methods,
however, suffer from major drawbacks. First, most of the
existing KG completion methods rely on a sufficiently large
number of training examples per relation. This could become
an issue as most real-world KGs have a long-tail structure
so that many relationships occur only a handful of times.
The data scarcity issue is exacerbated for temporal graphs,
where the distribution of occurrences of certain events over
time can be highly inhomogeneous and bursty, and in fact,
new types of relationships might emerge that have not been
observed before. While recent research has addressed the
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data scarcity issue for static KGs, existing approaches can-
not account for the dynamics in TKGs. Finally, most of the
existing methods disregard the streaming nature of the in-
coming data in real-world KGs. Therefore, they have to be
re-trained which could potentially be very time-consuming,
or fine-tuned which could cause over-fitting.

The focus of my doctoral research is to introduce models
that not only capture the relational dynamics of the TKGs
but also tackle the data scarcity problem.

Completed Research
A TKG can be represented as a set of quadruples G =
{(s, r, o, t)|s, o ∈ E , r ∈ R}, where E is the set of enti-
ties, R is the set of relations and t is the timestamp. KG
completion for a static KG involves predicting new facts by
either predicting an unseen object entity for a given subject
and relation (s, r, ?) or predicting an unseen link between
the subject and object entity (s, ?, o). This section includes a
brief explanation of my work on building models for tempo-
ral knowledge graphs completion. Both proposed models are
evaluated on two popular benchmarks for TKG completion
tasks and outperform the state-of-the-art baselines.

Tensor-based Method for Temporal Geopolitical
Event Forecasting (Mirtaheri et al. 2019)
In this work, we want to predict new events (s, ?, o, t) at time
t by predicting an unseen link between subject and object
entity. We represent the interaction data as a 4-dimensional
Tensor M of size |E|× |E|×T ×|R|, where T is the number
of time steps, and |R| is the number of relations and an entry
msotr on matrixM corresponds to the number of interactions
of type r from entity s to o at timestamp t. Given Tensor
M , we want to extrapolate entries along the third (i.e. time)
dimension. Specifically, we want to output a tensor with
dimensions |E| × |E| × C × |R|, where C is the number of
time steps we would like to predict in the future. This output
tensor is an estimate of the number of different interactions,
between every entity pair, that will happen in the upcoming
C time steps. Our proposed algorithm includes the following
steps:
Tensor Factorization. Tensor factorization methods identify
the underlying hidden structure of the data. More specifi-
cally, the 4-dimensional matrix M can be factorized into four
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low-rank factor matrices θS ∈ R|E|×N , θO ∈ R|E|×N , θT ∈
RT×N , and θR ∈ R|R|×N , and their outer tensor product
should recover M . We use Bayesian Poisson Tensor Fac-
torization (BPTF) proposed in (Schein et al. 2015), which
is a probabilistic approach for identifying the latent struc-
tures. BPTF assumes that msotr is coming from a Poisson
distribution (as it is suitable for count data).
Forecasting. We extrapolate θT producing θC through a sim-
ple autoregressive convolutional model. In particular, we train
convolutional filter W ∈ Rl×N×N , where filter height l al-
lows us to process l timesteps in the past for predicting a
single timestep. Given θS , θO, θR and extrapolated rows θC ,
we predict the future tensor using the PARAFAC method.

One-shot Learning for Temporal Knowledge
Graphs (Mirtaheri et al. 2020)
As mentioned earlier, data scarcity is an even bigger problem
in relational learning with TKGs. Few-shot episodic training
has been proven to be effective to tackle this problem for
static KGs (Xiong et al. 2018). In this work we want to
predict new events (s, r, ?, t) at time t by ranking the true
object entities higher than others, under a hard condition
where there is only one training example for each relation.
The goal is to learn a metric space, that can be used during
the inference to generate a similarity score between the one
given example and a given query (a potential event). The
similarity score is proportional to the likelihood of that event.

We extend the framework proposed by Xiong et al. 2018
for TKG completion. We divide the relations of a given TKG
into two groups based on their frequency: frequent relations
F and sparse relations T . We assume to have a set of tasks
where each task corresponds to a sparse relation r ∈ T , and
has its own training and test set denoted as support and query
set respectively defined as follows:

Str = {(s0, r, o0, t0)|s0, o0 ∈ E}
Qtr = {(sq, r, oq, tq)|sq, oq ∈ E , tq ∈ [t, t+ w]},

(1)

The loss function lθ at each episode optimizes a score
function Pθ that ranks the true test queries in Qtr, higher than
the others. The final optimization loss is:

L = Er∼T

[
EQt

r∼G,St
r∼G

[
lθ(Q

t
r|Str)

]]
(2)

The relations in T are divided into meta-train, meta-val
and meta-test relations, and any pair of these sets are mu-
tually exclusive, meaning that the model can handle un-
seen relations during the test time. We assume there is also
no time overlap between the quadruples in the meta-train,
meta-val and meta-test. Finally, we assume that the model
has access to a background knowledge graph defined as
G′ = {(s, r, o, t)|s, o ∈ E , r ∈ F}, and the entity set E
is a closed set, i.e., there are no unseen entities during the
inference time. Our model is comprised of two major compo-
nents:
Neighborhood Encoder. The neighborhood encoder repre-
sents the neighborhood information of a given entity e as a d
dimensional vector he and preserves the relational/sequential
graph structure. It encodes the one-hop neighborhood during

the past l timesteps as a sequence. The adjacent nodes at
each timestamp are aggregated and given to a self-attention
network to make a time-aware neighborhood representation.
Metric Learning. A similarity function parameterized by a
neural network,M(q, S), that takes the representation of the
support S and a potential event q = (sq, r, oq, t) as input, and
outputs a scalar similarity score between them proportional
to the likelihood of the event.

Our model improves the link prediction performance over
the sparse relations by 20%.

Current Research
Due to the dynamic nature of knowledge graphs, it might
become necessary to do a frequent model re-training, which
requires time and memory for keeping a large training dataset.
Instead, we are working on developing efficient models for
KG and TKG completion capable of handling new relations
and entities and do not require re-training. Our goal is to
employ the continual learning (Song and Park 2018; Zhou
et al. 2020) framework to avoid the model over-fitting and
catastrophic forgetting. We have designed the problem setup
and are now conducting initial experiments.

Future Work
To make the technology useful for large-scale real-world ap-
plications, we would like to combine continual learning and
meta learning approaches to engineer an end-to-end system
that works for a broad variety of knowledge graphs. Specifi-
cally, we would like to exploit synergies between different
problems so that learning a task or set of tasks for one KG
can help to inform the learning process for another KG.
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