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Abstract

The use of machine learning components in safety-critical
systems creates reliability concerns. My thesis focuses on de-
veloping algorithms to address these concerns. Because the
assurance of a safety-critical system generally requires mul-
tiple types of validation, my research takes three directions:
safe deep learning algorithms, formal verification of neural
networks, and adaptive testing methods.

Deep learning has proven useful in domains as diverse as
computer vision, natural language processing, and control
of autonomous agents. Given its success, there is interest in
applying deep learning to safety-critical systems (Bojarski
et al. 2016). Consequently, methods must be developed to
assure the safety of systems containing neural networks. My
thesis focuses on addressing this need through safe deep
learning methods, formal verification of safety properties for
neural networks, and adaptive testing strategies.

Research Question 1: How does the use of human ex-
perts affect the safety and performance of imitation
learning algorithms? In the imitation learning paradigm,
an autonomous agent is trained by an expert. This work fo-
cuses on a commonly used imitation learning framework
known as DAgger (Ross, Gordon, and Bagnell 2011), and
considers the use of human experts within the DAgger
framework. Together with others in the lab, I tested vari-
ous imitation learning algorithms for driving a real car. A
key problem with using humans as experts in DAgger is
that the DAgger algorithm does not provide the human ex-
pert with enough control authority, as DAgger frequently
switches control between the agent, called the novice, and
the expert. This procedure can result in unsafe oscillations
when the human expert overcorrects in response to their re-
duced control authority. In addition, handing control over
to a partially trained novice is dangerous in and of itself.
Relevant literature focuses on minimizing the number of
times that a human expert is queried during a robot learn-
ing task, but does not address safety issues that can arise
during learning (Laskey et al. 2016). We build on recent
work that uses Bayesian deep learning to generate a “con-
fidence” for a trained policy, but which does not provide an
approach for selecting a meaningful threshold on this confi-
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dence (Menda, Driggs-Campbell, and Kochenderfer 2018).
To address issues of safety both during and after learning,
we developed the Human-Gate DAgger (HG-DAgger) algo-
rithm (Kelly et al. 2019). HG-DAgger uses Bayesian deep
imitation learning and gives complete control authority to
the human expert when they deem the situation unsafe. The
average confidence value of the policy at the time of “hand-
off” is used to place a safety threshold on the confidence
once training is complete. In effect, the human expert’s
judgement is used to determine the threshold separating safe
and unsafe behavior. This calibrated confidence metric can
be used to monitor the safety of the learned policy.

Research Question 2: How can formal methods be used
to verify the safety of systems that contain neural net-
work control policies? An example of such as system is an
autonomous aircraft that uses a neural network as a flight
controller. Recent work has made the formal verification of
neural networks tractable (Liu et al. 2019). My work builds
upon that progress to address the “closed loop system” –
a dynamical system with a neural network control policy.
Specifically, this work addresses discrete time, nonlinear
dynamical systems. There is recent literature from the hy-
brid systems community that studies the formal verification
of continuous time dynamical systems with neural network
control policies (Xiang et al. 2018). However, this work can-
not be applied to discrete time systems without significant
degradation in effectiveness. There is also work in the for-
mal methods literature on verifying properties of nonlinear
systems, but these methods cannot handle the computational
burden of neural networks (Gao, Kong, and Clarke 2013).

Consequently, I have developed a method called OVERT
to analyze such nonlinear, discrete time, closed loop systems
with neural network control policies (Sidrane and Kochen-
derfer 2019). OVERT approximates the original nonlinear
dynamical system in such a way that if no counter examples
can be found for the approximate system, one can soundly
claim there are no counter examples for the original system.
OVERT produces tighter approximations than adapted con-
tinuous time tools and OVERT is much more computation-
ally efficient than verification tools that are not specialized
to handle neural networks (Gao, Kong, and Clarke 2013).

This work on OVERT will be extended in two directions
over the next year. The first extension is to prove unbounded
properties of discrete time systems, such as stability in the
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control theory sense. My approach for this extension is to
pursue Lyapunov stability, which requires finding a pair of
timesteps such that the state space reachable at time t+ n is
a subset of the state space reachable at time t for some finite
n. I plan to use OVERT to search for such pairs of timesteps
using iterative refinement of the initial set at time t and of the
approximations used inside OVERT. The second extension
of OVERT is to approximate not only the dynamical system,
but also the neural network controller. The central idea is
to approximate the neural network controller with a smaller
network that is faster to verify. Once a smaller network has
been trained or pruned, neural network verification tools can
be used to confirm that the smaller, approximate network can
be used to make sound claims about the original network.

Research Question 3: When using adaptive stress test-
ing, how do we know when a system had been tested
enough? Unlike formal methods, testing cannot prove the
absence of bugs, but it can handle more complex systems
than can formal verification tools. A recent technique called
adaptive stress testing uses an adversarial agent trained using
reinforcement learning to choose environment parameters
that make the system under test fail (Lee et al. 2015). It is fast
and flexible to solve this reinforcement learning problem us-
ing deep learning (Koren et al. 2018). Unfortunately, when
deep learning is used, one cannot be guaranteed to find the
optimal adversarial agent policy and corresponding “worst
case scenario” for the original system. My current work is
exploring whether useful notions of “testing coverage” can
be obtained when doing adaptive stress testing. It would be
useful to know where in the state space of the original sys-
tem we’ve tested “enough”. My first line of exploration uses
deep, Bayesian, value-based reinforcement learning to train
the adversarial agent (Lee et al. 2020). A Bayesian approach
allows assessment of the confidence of the adversarial pol-
icy. High confidence of the adversarial policy should imply
that enough samples have been taken from the region of state
space in question. Work is ongoing to assess the reliability
of these confidence estimates.

Research Plan By December 2020: Extend OVERT
workshop paper for journal submission, begin exploring fur-
ther closed loop verification topics. By February 2020: Pre-
pare and submit paper on adaptive stress testing coverage
work. By April 2021: Prepare and submit paper on un-
bounded closed loop verification technique. By June 2021:
Prepare and submit paper on closed loop verification with
approximation of the neural network. By August 2021: Fin-
ish first draft of thesis.

Anticipated Thesis Contributions My contributions con-
sist of techniques to assure the safety of systems contain-
ing machine learning components using tools from a vari-
ety of fields including formal methods, testing, and Bayesian
deep learning. Specifically, these contributions are: 1) A new
imitation learning algorithm suitable for use with human
experts that produces a heuristic estimate of policy safety
once trained, 2&3) New algorithms with which to perform
both bounded-time and unbounded time safety verification

of closed-loop systems with neural network controllers, 4)
A new algorithm with which to perform approximation of
neural network controllers so that verification of closed-loop
neural network systems may be done more efficiently, and fi-
nally 5) A method to assess testing coverage after adaptive
stress testing has been used to find system failures.
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