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Abstract

We present a novel Auxiliary Truth enhanced Genetic Al-
gorithm (GA) that uses logical or mathematical constraints
as a means of data augmentation as well as to compute loss
with the aim of increasing both data efficiency and accuracy
of symbolic regression (SR) algorithms. Our method, logic-
guided genetic algorithm (LGGA), takes as input a set of
labelled datapoints and auxiliary truths (AT) (mathematical
facts known a priori about the unknown function the regres-
sor aims to learn) and outputs a specially generated and cu-
rated dataset that can be used with any SR method. We eval-
uate LGGA against state-of-the-art SR tools, namely, Eureqa
and TuringBot, and find that using these SR tools in conjunc-
tion with LGGA results in them solving up to 30.0% more
equations, needing only a fraction of the amount of data com-
pared to the same tool without LGGA, i.e., resulting in up to
a 61.9% improvement in data efficiency.

Introduction
The problem we aim to solve is the following: How can
the user of a symbolic regression (SR) system leverage
their domain-specific mathematical knowledge, i.e., auxil-
liary truths (ATs), with the aim of making SR more data ef-
ficient and more likely to find the target equation? This work
is inspired by (Scott, Panju, and Ganesh 2020).

SR systems take as input a dataset and a set of symbols
(input alphabet), and output a candidate symbolic expres-
sion over the input alphabet that fits the data. In LGGA, we
also take the set of ATs. We define ATs as mathematical ex-
pressions that capture domain-specific knowledge or simple
properties of an unknown function f to be learnt. For exam-
ple, consider the equation R = r1r2

r1+r2
(Parallel Resistance).

Physicists could draw upon their domain knowledge about
resistors and infer an AT: if one resistor has zero resistance,
the combined resistance is zero, a simple AT that a physi-
cist could infer without knowing the actual equation. This
AT can be exploited as an added specification to aid the SR
procedure such that it is more data efficient and produces an
expression that is a better approximation of the target equa-
tion/function than otherwise.

A crucial property of any AT we consider is the following:
a candidate learnt function or symbolic expression is incor-
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Figure 1: Architecture Diagram for LGGA

rect if it is inconsistent with the input ATs. Further, whenever
an SR system produces a candidate symbolic expression, if
such an expression happens to be inconsistent with the ATs
(i.e., a counterexample can be computed), not only do we
receive a signal that the candidate function is incorrect
which can be used as part of a loss function, but we also can
use the counterexample to augment the dataset and feed
it back to the SR system in a corrective feedback loop.
AT Enhanced Loss Function: The AT Enhanced Loss
Function is a weighted sum of the traditional Mean Squared
Error (MSE) and TruthError – a measure which is higher for
equations that have a higher degree of violation of the input
ATs. To do this, we use a violation function vt(f̂ ,x) which
is a measure of the violation of AT t for a given datapoint x
when using a candidate equation f̂ . If vt(f̂ ,x) > vt(ĝ,x)

it implies that f̂ violates the AT more on a given datapoint
than another candidate equation ĝ does. We define Truth Er-
ror due to a single candidate function f̂ produced by an SR
system as

TruthError(f̂ , T,X) :=
1

|T |
∑
t∈T

max
x∈X

(vt(f̂ ,x)) (1)

where T is the set of all ATs known a priori of the target
function f , X is dataset and vt is the violation function for
truth t ∈ T .
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Equations Minimum Datapoints Needed for Eureqa Minimum Datapoints Needed for TuringBot
Target Equation LGGA No LGGA DE % LGGA No LGGA DE %
r1r2
r1+r2

8± 2 21± 3 62 1± 0 1± 0 0
sin(i)
sin(r) 6± 1 14± 2 58 6± 1 10± 2 40
Kq1q2
r2 6± 1 14± 2 58 2± 0 2± 0 0
|n1−n2

n1+n2
|2 200± 40 NoDisc Disc 600± 100 NoDisc Disc

PV
nT 6± 3 15± 4 60 4± 0 4± 0 0√
(x1 − x0)2 + (y1 − y0)2 200± 100 NoDisc Disc 2000± 800 NoDisc Disc

e−x2

2π 190± 100 NoDisc Disc 300± 50 800± 200 62.5
Gm1m2
1
r2
− 1

r1

13± 5 23± 3 45 10± 5 25± 7 60
m1r1+m2r2
m1+m2

22± 3 38± 5 43 7± 0 14± 3 50
mrv sin(θ) 23± 6 48± 7 52 11± 3 20± 5 45√

prγ
ρ 23± 5 55± 6 59 1300± 750 2000± 700 35

gqB
2m 15± 4 40± 3 62.5 18± 3 25± 4 28

Table 1: Select results from Experiment. Abbreviations Used:- NoDisc: Does not Discover Equation. Disc: Enables Discovery.

AT Driven Data Augmentation: Unlike classic GAs, in-
stead of having a fixed input dataset, the LGGA system pro-
gressively generates and adds interesting datapoints as the
training goes on. Every time a new generation is created, we
find the best performing function and use the points in the
current dataset to check whether any AT is violated for this
equation. If an AT is violated, we can use it to produce new
datapoints from the existing ones without having to query
an oracle to obtain output labels. This continues until the
specified generation limit is met, or the overall error reaches
a threshold. As an example, suppose we wish to learn an
unknown function f where the given AT is that f is sym-
metric in its arguments, and are performing the data aug-
mentation process for candidate equation f̂(x1, x2). If the
provided dataset contains the datapoint f(2, 3) = 4, then
to evaluate whether f̂ is compliant with the AT we would
check if |f̂(2, 3) − f̂(3, 2)| > 0. At the same time, we are
able to create a new datapoint for free which is f(3, 2) = 4.
Encoding Boundary Points: The way a function behaves
around key points of interest, including domain boundaries,
strongly defines the function’s behavior in general. ATs fre-
quently target these key points when used for data augmen-
tation, thus, augmenting a dataset with these points signifi-
cantly reduces the set of viable choices of expressions that
an SR system has to make.
Deterring Overfitting: Modern SR techniques avoid over-
fitting by penalizing high complexity expressions, allowing
them only when they admit a low MSE. This is less effective
with small datasets since overfitted equations can achieve a
near-zero MSE when data is scarce. LGGA solves this by
consider the AT enhanced loss function which penalizes AT
violating functions even if they are good fits by MSE.

Experiments and Results
We test LGGA’s ability to generate richer and more infor-
mative datasets to augment industrial-strength SR tools and
quantify how effective this data augmentation procedure is

in improving the highly-engineered SR tools Eureqa and
TuringBot (Schmidt and Lipson 2009). We first find the min-
imum number of datapoints needed for Eureqa (resp. Tur-
ingBot) to solve the equation with a timeout of 15 minutes
- mRAND. We start with a large number of random data-
points and lower the number of points given until the tool
stops solving the equation. We then produce an augmented
dataset and follow the same procedure to find the minimum
number of datapoints needed for Eureqa (resp. TuringBot)
to solve the equation using the augmented dataset -mLGGA.
We then use as a metric the improvement in data efficiency:
mRAND−mLGGA

mRAND
% as a way to measure the reduction % of

data needed, in an apple-to-apple comparison of Eureqa vs.
Data Augmented Eureqa (resp. TuringBot). The above ex-
periments were repeated five times for each equation, and
we noted the mean and deviation of the minimum number
of datapoints needed to learn each equation.

Eureqa shows significant improvements when used with
an LGGA augmented dataset (shown in Table 1). Ev-
ery equation shows a reduction in the minimum number
of datapoints needed for discovery, and three equations
are discovered only when LGGA augmented data is used.
Even with these industrial-strength tools, we see a con-
sistent reduction in the number of datapoints needed as
well as enabling the discovery of two equations (see Ta-
ble 1). This experiment shows that LGGA has a signif-
icant positive influence on the data efficiency and con-
vergence rates of industrial SR tools. For more results
see:https://dhananjayashok.github.io/LGGA/
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