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Abstract

Recent work in neural architecture search has spawned inter-
est in algorithms that can predict the performance neural net-
works using minimum time and computation resources. We
propose a new framework, Network Epoch Accuracy Predic-
tion Framework (NEAP-F) which can predict the testing ac-
curacy achieved by a convolutional neural network in one or
more epochs. We introduce a novel approach to generate vec-
tor representations for networks, and encode “ease” of classi-
fying image datasets into a vector. For vector representations
of networks, we focus on the layer parameters and connec-
tions between the network layers. A network achieves differ-
ent accuracy on different image datasets; therefore, we use
the image dataset characteristics to create a vector signifying
the “ease” of classifying the image dataset. After generating
these vectors, the prediction models are trained with architec-
tures having skip connections seen in current state-of-the-art
architectures. The framework predicts accuracies in order of
milliseconds, demonstrating its computational efficiency. It
can be easily applied to neural architecture search methods to
predict the performance of candidate networks and can work
on unseen datasets as well.

Introduction and Objective
In this paper, we propose Network Epoch Accuracy Predic-
tion Framework (NEAP-F) which, based on network archi-
tecture and image dataset characteristics, predicts the per-
formance of the network on an image dataset without train-
ing it. We have also outlined the formal representations of
the network architectures and image dataset characteristics
that influence classification accuracy, along with comparing
the performance of known regression methods in predicting
the accuracy of networks. NEAP-F can be used to predict
the testing accuracy for an epoch, or to predict the train-
ing curve over several epochs, which can be incorporated in
neural architecture search techniques to evaluate how well
a candidate network performs on an image dataset, and use
this evaluation to propose networks. Through this work, we
reduce the computational time and resources involved in ex-
amining network performance on an image dataset by sub-
stituting training with prediction of its training performance.
The image dataset vector generation approach enables the
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network to predict a sample network’s performance on un-
seen image datasets. We provide a vector representation for
network architectures with skip connections by modelling
them as graphs. Finally, we demonstrate the results of sam-
ple networks trained on CIFAR-10 (Krizhevsky, Nair, and
Hinton 2009), MNIST (LeCun, Cortes, and Burges 2010)
and SVHN (Netzer et al. 2011) datasets with their testing
accuracies over initial epochs of training.

Proposed Framework
The inputs to NEAP-F are sample network architecture,
epoch and image dataset representations, and the intended
output is the accuracy of the network. The steps involved in
the proposed framework are summarized below.
Architecture Data Points Generation: The sample net-
works have been trained on 3 different datasets, CIFAR-
10 (Krizhevsky, Nair, and Hinton 2009), SVHN (Netzer
et al. 2011) and MNIST (LeCun, Cortes, and Burges 2010).
To accommodate sample networks with skip connections
in the framework, we trained networks on CIFAR-10 and
MNIST datasets with skip connections. We augment the
dataset with more sample architectures using the MetaQNN
architecture samples given in the dataset in (Baker et al.
2017). We have 2748 sample architectures and their train-
ing curves, a total of 50670 pairs - each having a <
sample network, image dataset, epoch > triplet and its
corresponding accuracy.
Vectorization of Network Architecture Samples and
“Ease” of Classifying Dataset: To convert sample networks
to vectors, we consider an analogy between networks and
graphs. Each edge (connection) starts from a source layer
(node) i and ends at a destination layer j. This helps to in-
corporate skip connections in network architecture vector.
To each edge, we have assigned a weight which can be seen
in equation 1 below. The value weight(i, j) signifies the
proportional number of channels that the source layer con-
tributes to the destination layer using this edge.

weight(i, j) =
number of output channels of layer i

number of input channels of layer j
(1)

We have encoded the edges using equation 2 below

edge(i, j) =< type(i), parameters(i), i, j, weight(i, j) >
(2)
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Model MSE MAE Relative
Ordinary Least Squares 0.0113 0.0794 0.1534
Bayesian Ridge Regressor 0.0113 0.0794 0.1542
SVM Regression 0.0076 0.0627 0.1211
XGBoost Regression 0.0078 0.0558 0.1242
Decision Tree Regressor 0.0071 0.0322 0.0727
Random Forest Regressor 0.0038 0.0287 0.0687

Table 1: Testing Error of Different Regression Models

where, type(i) returns the value mapping of type of layer i
and parameters(i) returns the parameters of layer i. Stack-
ing each edge vector into a single vector and padding it gives
the vector representation of the network. The intrinsic fea-
tures of the image dataset contribute to the performance of
a network on it, apart from network architecture and its hy-
perparameters. We have identified number of classes, class
imbalance, minimum and maximum inter-class similarity,
and minimum and maximum intra-class similarity in an im-
age dataset as factors pivotal to predicting the accuracy of
the network. (Abramovich and Pensky 2019) experimentally
showed that more the number of classes, higher is the classi-
fication accuracy. Intuitively, a dataset with clearly separated
clusters for each class will be easier to classify, hence, the
clusters should have lower intra-class distances, and higher
inter-class distances.
Accuracy Prediction NEAP-F combines the vector rep-
resentations of sample architectures, image datasets along
with epoch to output the accuracy of the sample network
on a particular epoch and image dataset. Hence, this is a
regression task and we have compared the performance of
ordinary least squares (OLS), Bayesian ridge (BvR), SVM,
XGBoost, decision tree, and random forest regression mod-
els. The performance is evaluated using mean squared error,
mean absolute error, and relative error.

Experiments and Results
The experiments have been performed on a single Tesla K80
GPU and are completed in order of miliseconds, demon-
strating that the framework is computationally efficient. The
dataset is split into 80% training and 20% testing for eval-
uating the performance of the models. We train the regres-
sor models to predict the accuracy values, which are in the
range [0,1]. Table 1 shows the error of regression models
on the testing set. The models are trained on ten-fold cross
validation and the hyperparameters are chosen through grid
search. We observe that random forest regressor gives the
lowest error, followed closely by the decision tree regressor,
while OLS and BvR yield the highest errors, indicating poor
performance.

The regression models are trained on subsets of size
smaller than the original dataset. The samples for the sub-
sets are chosen randomly and the mean squared error and
mean absolute error of these models on the testing set are
noted. As we can see in Figure 1, the error declines as the
subset size increases for all models. Decision tree regres-
sor shows the sharpest decline as subset size increases while

Model CIFAR10 MNIST SVHN
SVM Regression 0.0063 0.0402 0.0064
XGBoost Regression 0.0060 0.0265 0.0044
Decision Tree 0.0040 0.0547 0.0052
Random Forest 0.0023 0.0230 0.0032

Table 2: Prediction MSE Errors on Different Datasets

Figure 1: MSE of regression models on smaller subsets.

random forest regressor gives the lowest error for all subset
sizes. This experiment demonstrates that the models can give
competent performance vis-a-vis lower mean squared error
even when less data is available for training. We further ex-
amined the performance of regression models in predicting
the accuracy achieved by sample networks trained on spe-
cific image datasets. A new mini-dataset of network samples
and epoch accuracies is prepared for each image dataset and
80:20 train-test split in each such mini-dataset is made for
this experiment. Table 2 shows the mean squared error of
the models on the networks trained on CIFAR-10, MNIST
and SVHN separately. From the experiments, we infer that
random forest regressors perform the best out of all the re-
gression models.
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