
Reducing Neural Network Parameter Initialization Into an SMT Problem
(Student Abstract)

Mohamad H. Danesh
Department of EECS, Oregon State University

Corvallis, OR, USA 97330
daneshm@oregonstate.edu

Abstract

Training a neural network (NN) depends on multiple factors,
including but not limited to the initial weights. In this paper,
we focus on initializing deep NN parameters such that it per-
forms better, comparing to random or zero initialization. We
do this by reducing the process of initialization into an SMT
solver. Previous works consider certain activation functions
on small NNs, however the studied NN is a deep network with
different activation functions. Our experiments show that the
proposed approach for parameter initialization achieves bet-
ter performance comparing to randomly initialized networks.

Introduction
Satisfiability is the problem of determining if a formula has
a model. In our case, formula is a set of propositions consist-
ing of the weight and bias values of the NN and model is the
set of initial values for them. Note that the described model
is different from the common NN models. Intuitively, each
possible model can be viewed as specifying a possible world
within which a well formed formula can be evaluated (Bar-
wise 1977). Also, coming up with reasonable initial values
for weights and biases of a NN is NP-complete (Judd 1990;
Blum and Rivest 1992).

In this paper, we investigate the complexity of initializ-
ing parameters in a more complicated NN, with hidden lay-
ers, nonlinear activation functions, and on a complex task:
classifying the hand written digits (MNIST). In this setting,
initializing parameters is not an NP-complete problem any-
more, but NP-hard. We tried to reduce our problem to have
a framework that solves instances using an SMT-solver.

Approach
The NP-Hard problem we address answers the question: “Is
it possible to learn parameters of a deep NN for an arbitrary
task such that it performs better than some relatively high
threshold compared to randomly initialized parameters?”.
Deep learning algorithms involve optimization in many con-
texts. The input of the optimization problem is a dataset and
an objective, and the output is a set of values for the weights.

Traditionally, parameters are initialized to small random
values, and are updated across many iterations by using an

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overall framework. Left: schematic demonstration
of a DNN; Right: the equivalent SMT formulation.

optimization algorithm. This algorithm mostly uses gradient
computation to find optimal values of parameters minimiz-
ing or maximizing an objective function.

If the weights of a NN are initialized to all 0s, then the
activation of each node will be 0 as well. They will also
all compute the same gradients during backpropagation and
undergo the exact same parameter updates. In other words,
there is no source of asymmetry between neurons if their
weights are initialized to have the same values.

Another approach is random initialization (Glorot and
Bengio 2010). This way, weights are all random and unique
in the beginning, so they compute distinct updates and inte-
grate themselves as diverse parts of the full network. How-
ever, the problem is that there is no guarantee that model
converges to an optimal weight assignment in a limited time
frame. To converge faster, initialization of parameters is im-
portant. In this work, we investigate if SMT solvers could
achieve a reasonable parameter initialization with a guaran-
tee to better and faster convergence. First, the training pro-
cess of a NN is reduced into an SMT problem for a binary
classification problem. Second, the problem of integrating a
non-linear activation function in an SMT solver and scalabil-
ity of a large training set is investigated. Finally, the training
results between randomly initialized weights and weights
initialized by the results of an SMT solver are compared.

Reducing Training To SMT Problem
NN Training
We are given a dataset composed of N input vectors
{x1, ..., xN} of dimension n and their respective labels

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15775



{y1, ..., yN}.X has the dimension of n×N where each col-
umn corresponds to an input xi, and similarly, Y is the label
matrix of dimension N × 2. Each label is a one-hot encoded
vector where 1 at index zero means the sample is from class
0 and at index one means the sample is from class 1.

An NN computes an estimation of a label given an input
sample. Inference is done according to the value of the acti-
vation output after the final layer of the network. We define h
as the network function and θ as the set of network weights.
For the input xi, we have the estimated output h(xi, θ) = ŷi
and the goal is to have ŷi = yi. For a deep network com-
posed of k weights: θ = {W1, ...,Wk} and for an activation
function f , the output can be expressed as:

ŷi = h(xi; θ) = f(WT
k f(W

T
k−1f(...f(W

T
1 xi))) (1)

Having the predicted output and the ground truth, the follow-
ing formula, called binary cross-entropy, is typically used as
a loss function for classification tasks:

loss = −(y log(p) + (1− y) log(1− p)) (2)

where p is the predicted probability of observed output and
y is a binary value indicating if the class label is correct.

Each weight has an arbitrary number of connections
which define together the overall architecture of a deep NN.
We call {h1, ..., hk−1} the value of these hidden nodes, in
definitive:W1 ∈ Rn×h1 ,W2 ∈ Rh1×h2 , ...,Wk ∈ Rhk−1×1.
Typically, a non-linear activation function f is used to bring
non-linearity in the NN function h. One of the most used
functions is the ReLU function:

f(x) = max(0, x) (3)

The training is done in mini-batches of a certain size and
is parameterized primarily in order to deal with large train-
ing datasets. The optimization algorithm is then used over
many iterations organized in epochs to update the weights.
It mostly consists of finding a local optima in the objective
function and uses the backpropagation algorithm to compute
the gradient of all parameters composing the network.

SMT Formula
Input of an SMT solver uses a set of variables representing
real numbers that are expressed in classical order logic for-
mula with equalities and/or inequalities, and translates it into
a traditional SAT formula. We want to express the task of
NN with a formula where the input variables are the weights
of the network. Since the weights represent the variables in-
put to the SMT solver, we have in total n× h1 × ...× hk−1

variables plus the corresponding bias terms.
To be consistent, we need the same settings given as in-

put such as a training dataset, an architecture and a task. The
architecture needs to be defined beforehand and will be inte-
grated in the first-order logic formula. However, since we do
not use the same algorithm for training as the classical ap-
proach, we do not use some hyper-parameter such as mini-
batch size, learning-rate and number of training epochs.

We infer label 0 if the first dimension of the output acti-
vation is higher than the second dimension as illustrated in
Figure 1. We then express each clause of the SMT formula-
tion as a part of the objective of the classification problem.

The objective for one input xi is to have ŷi = yi which is ex-
pressed in as ˆyi,0 > ˆyi,1 if yi = 0 and ˆyi,1 > ˆyi,0 if yi = 1.
A simplified version of the entire formula can be written as:

(ŷ1 = y1) ∧ ... ∧ (ŷN = yN ) (4)

We notice that the length of the formula depends on the
number of inputs provided in the training set. The more
input samples are presented, the more constrained are the
assignments of weights. This property links directly to the
more traditional machine learning approach using gradient
descent which highly rely on the number of training data.

We also noticed that putting all weights to zero can yield a
satisfiable SMT formula depending if we use strict or loose
inequalities. To avoid a dummy assignment of weights, an-
other set of constraints added to enforce the values of the
weights to be other than zero. We call W (k)

ij , the value at the
ith row and jth column of the weight at layer k. The formula
then becomes:

(ŷ1 = y1) ∧ ... ∧ (ŷN = yN ) ∧ (W
(0)
00 ! = 0) ∧ ... ∧ (W

(k)
(k−1)2! = 0) (5)

The additional set of constraints is inspired from the dropout
technique (Srivastava et al. 2014) used in NNs, where a layer
sets a weight value to zero with a Bernoulli probability. In
our case, we use the same method but instead we enforce
random weight values to be different than zero.

One of the main components of NNs is the non-linear ac-
tivation function. With that, it is possible to implement any
function using NNs. To address this feature in the SMT for-
mula, we set the activation function to ReLU (3).

References
Barwise, J. 1977. An introduction to first-order logic. In
Studies in Logic and the Foundations of Mathematics, vol-
ume 90, 5–46. Elsevier.
Blum, A. L.; and Rivest, R. L. 1992. Training A 3-Node
Neural Network Is NP-Complete.
Glorot, X.; and Bengio, Y. 2010. Understanding the dif-
ficulty of training deep feedforward neural networks. In In
Proceedings of the International Conference on Artificial In-
telligence and Statistics (AISTATS’10). Society for Artificial
Intelligence and Statistics.
Judd, J. S. 1990. Neural Network Design and the Complexity
of Learning. Cambridge, MA, USA: MIT Press. ISBN 0-
262-10045-2.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Ma-
chine Learning Research 15: 1929–1958. URL http://jmlr.
org/papers/v15/srivastava14a.html.

15776


