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Abstract

Meta-Reinforcement Learning (RL) algorithms promise to
leverage prior task experience to quickly learn new unseen
tasks. Unfortunately, evaluating meta-RL algorithms is com-
plicated by a lack of suitable benchmarks. In this paper we
propose adapting a challenging real-world heating, venti-
lation and air-conditioning (HVAC) control benchmark for
meta-RL. Unlike existing benchmark problems, HVAC con-
trol has a broader task distribution, and sources of exoge-
nous stochasticity from price and weather predictions which
can be shared across task definitions. This can enable greater
differentiation between the performance of current meta-RL
approaches, and open the way for future research into algo-
rithms that can adapt to entirely new tasks not sampled from
the current task distribution.

Introduction
Yu et al. (2020) identify that the lack of realistic benchmarks
and evaluation protocols hinders the progress of research
in meta-RL methods. Current meta-RL approaches are typi-
cally evaluated on maze navigation tasks (Duan et al. 2016),
locomotive tasks (Finn, Abbeel, and Levine 2017) and Ban-
dit problems (Ritter et al. 2018). However, the task distri-
butions of these benchmarks are too narrow, as the tasks
are structurally similar and synthetic, lacking realistic uncer-
tainty sources. In turn, this means that these benchmarks do
not challenge algorithms to learn a shared structure across
a wide task distribution. Thus, it becomes difficult to differ-
entiate the performance of existing algorithms, which lim-
its the development of new algorithms. This paper proposes
a new meta-HVAC benchmark with a broader task distri-
bution, that addresses the weaknesses in current meta-RL
benchmarks. It is more aligned with real-world problems be-
cause it includes realistic stochasticity that we expect meta-
RL algorithms to generalize over.

Meta-HVAC
The proposed meta-HVAC benchmark primarily responds to
the problem of heating buildings in the context of fluctuating
energy prices. We can frame this problem as a RL problem,
where an agent controls a central-heating system, and has to
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Model Price Occupancy Grid limits

1st-order Flat tariff Always Unlimited
2nd-order Day/night tariff Scheduled Planned
Multi-zone Real-time det. Predicted On-line
Fluid dynamics Real-time stoch. - -

Table 1: Identified variable factors of HVAC control tasks.

make decisions about thermostat set points. The agent has
to respond to a variety of exogenous factors. One factor is
the real-time energy market, which typically has long peri-
ods of flat, stable low prices, interspersed with short periods
where the price can spike to 3-4 times the average. Accord-
ingly, consumers risk having to pay extremely high prices
during periods of peak price. Other considerations the agent
must regard are the occupancy levels of a building, as well
as any grid limitations on power-supply. However, since RL-
algorithms are highly sample-inefficient, they typically need
to be trained on very accurate simulations of target build-
ings. This, however, is highly expensive, time-consuming
and inefficient, rendering it infeasible to be deployed on a
wider scale. A solution is to cast this problem as a meta-RL
problem, whereby the agent is trained on a variety of sim-
ulated buildings and tasks. This enables the agent to learn
a shared structure across buildings and tasks, which it can
leverage to learn novel, unseen tasks more efficiently. This
reduces the need for a simulator specifically tailored to the
target building, making it more feasible for real-world appli-
cation. Relevantly, the meta-HVAC benchmark can be used
to train the agent on a variety of tasks. Most importantly,
because this benchmark contains a broader task distribution,
and is more closely aligned with real-world circumstances,
it corrects deficiencies in existing meta-RL benchmarks.

Meta-HVAC Tasks
Owing to its broadness and stochastic features, the meta-
HVAC benchmark is an appropriate benchmark for evaluat-
ing meta-RL algorithms. In the meta-HVAC benchmark, the
overarching task variables are model, price, occupancy and
grid limits (as detailed in Table 1). Firstly, the different simu-
lation models correspond to different transition dynamics of
the Markov Decision Process (MDP), resulting in new tasks.
Additionally, within each simulation model, different build-
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ing configurations exist. Building configuration denotes the
nature and size of the target enclosure. These configurations
also determine the dynamics of the MDP, such that they can
be classified as different tasks. In sum, the diversity of simu-
lation models, combined with the different building configu-
rations naturally broaden the benchmark’s task distribution.

Secondly, choosing a different price variable results in
a new objective for the agent. For example, selecting a
‘flat tariff’ price exclusively corresponds with the objective
of maintaining a comfortable temperature. Contrastingly, a
real-time stochastic price relates to the objective of balanc-
ing cost and comfort. Since this variable allows for different
objectives, this expands the range of tasks, thereby broad-
ening task distribution. Moreover, because the agent must
respond to real-time stochastic prices, this introduces real-
world uncertainty. The benchmark uses energy price data
from AEMO1, which varies across 5-minute intervals.

Thirdly, varying occupancy levels — always, scheduled
and predicted occupancy — also influence the dynamics of
the MDP, but only for a specific period during an episode.
Lastly, grid limits refer to periods when electricity can-
not be accessed, such as planned and sporadic instances of
non-supply, as compared to unlimited supply. Because oc-
cupancy levels and grid limits are beyond the agent’s con-
trol, this lends exogeneity to the benchmark, making it more
realistic. Additionally, sampling from the four overarching
variables—model, price, occupancy and grid limit—as well
as selecting a specific building configuration within the sim-
ulation model, results in a broader task distribution.

Empirical Results
We use RL2 (Duan et al. 2016; Wang et al. 2016), an LSTM-
based on-policy meta-RL algorithm. The meta-training task
distribution consisted of six building configurations of 1st-
order models, and two building configurations of 2nd-order
models, totalling eight buildings.2 Three of the 1st-order
buildings, and one of the 2nd-order buildings had a flat
tariff price task. The remaining four buildings had a real-
time stochastic price task. We sampled one unseen building
from both the first and second order models, to calculate the
mean reward over 50 episodes. The occupancy and grid lim-
its were set at ‘always’ and ‘unlimited’, respectively, during
both training and testing. Performance shown in Fig. 1, test-
time learning curves in Fig. 2. For comparison, we used a
task specific policy trained with ACKTR algorithm.

Conclusion and Future Work
At the time of writing this paper we are in the process of
extending this benchmark to multi-task RL problems. More-
over, a critical assumption is that the training-task distribu-
tion should be the same as the testing-task distribution. How-
ever, an open problem is designing algorithms which do not
rely upon this assumption. As shown in Fig. 1, when the

1https://aemo.com.au/en/energy-systems/electricity/national-
electricity-market-nem/data-nem/data-dashboard-nem

2Our code may be found at:
https://github.com/yashvirsinghgrewal-crypto/energyexperiments
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Figure 1: Per-task performance of the learned policy. Single-
task learner ACKTR for reference against RL2, trained with
and without 2nd-order models in the training tasks.

Figure 2: Learning curve of RL2 on unseen 2nd-order model,
when trained with and without 2nd-order models in tasks.

agent’s training-task distribution did not include any 2nd-
order model buildings, it performed poorly when tested on
a 2nd-order model building, more specifically when the task
had a real-time stoch. price. Therefore, a future research en-
deavour is designing algorithms that do not require the test-
task to be sampled from the same distribution as the training-
task. Accordingly, the meta-HVAC benchmark paves the
way for developing this class of algorithms.
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