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Abstract

Semi-supervised learning has been gaining attention as it al-
lows for performing image analysis tasks such as classifi-
cation with limited labeled data. Some popular algorithms
using Generative Adversarial Networks (GANs) for semi-
supervised classification share a single architecture for clas-
sification and discrimination. However, this may require a
model to converge to a separate data distribution for each task,
which may reduce overall performance. While progress in
semi-supervised learning has been made, less addressed are
small-scale, fully-supervised tasks where even unlabeled data
is unavailable and unattainable. We therefore, propose a novel
GAN model namely External Classifier GAN (EC-GAN), that
utilizes GANs and semi-supervised algorithms to improve clas-
sification in fully-supervised regimes. Our method leverages
a GAN to generate artificial data used to supplement super-
vised classification. More specifically, we attach an external
classifier, hence the name EC-GAN, to the GAN’s generator,
as opposed to sharing an architecture with the discriminator.
Our experiments demonstrate that EC-GAN’s performance
is comparable to the shared architecture method, far superior
to the standard data augmentation and regularization-based
approach, and effective on a small, realistic dataset.

Introduction
Deep generative model such as generative adversarial net-
works (GANs) facilitate generation of realistic images mim-
icking real data (Goodfellow et al. 2014). In GANs, two
neural networks, a generator and a discriminator, are trained
together, where the generator attempts to generate images
resembling real training samples while the discriminator dis-
tinguishes the generated samples from the generated ones.
Many existing methods which use GANs for semi-supervised
learning employ a single network for both classification and
discrimination (Salimans et al. 2016; Imran and Terzopoulos
2019). This means the network attempts to minimize two sep-
arate losses with the same parameters, which is our primary
concern. Very few algorithms have attempted to separate the
two networks, but those that have, such as Triple GAN (Li
et al. 2017), have only been used in semi-supervised scenar-
ios, focus on improved discrimination, and most importantly
do not use artificial samples for classification. Addressing
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Figure 1: EC-GAN has an external classifier which is trained
on generated and real images simultaneously. The discrimina-
tor and generator are trained conventionally, and the discrim-
inator’s sole output is the predicted probability of the image
being real. Pseudo-labels are created for artificial images.

these concerns, we propose EC-GAN to aid restricted, fully-
supervised learning with artificial data, while uniquely sepa-
rating the tasks of discrimination and classification.

Methods
The EC-GAN model consists of three separate networks:
a generator, a discriminator, and a classifier. For our archi-
tectures, we use the DCGAN (Radford, Metz, and Chintala
2016) and ResNet18 for the GAN and classifier respectively.
At every training iteration, the generator is given random
noise vectors and generates new images. The discriminator
takes either the real or the generated samples and distin-
guishes between them.

Simultaneously, a classifier is trained in supervised fashion
on the labeled data. We then use generated images as inputs
for supplementing classification during training. To create
labels for the artificial samples, we use a pseudo-labeling
scheme which assumes a label based on the most likely class
prediction according to the current state of the classifier (Lee
2013). The labels are only retained if the probability is above
a specific confidence threshold.

Our training objective utilizes both supervised and un-
supervised loss terms. As in standard GANs, the discrim-
inator loss is defined as LD(x, z) = BCE(D(x), 1) +
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Dataset Size (%) EC-GAN (%) Shared DCDiscriminator

Classifier GAN Classifier GAN

10 88.63 91.15 83.54 86.17
15 90.88 92.21 85.20 88.72
20 92.61 93.40 86.77 89.39
25 92.89 93.93 87.58 87.93
30 93.12 94.32 87.78 90.62

Table 1: EC-GAN is compared to the shared architecture
method on SVHN at different dataset sizes. Left value is
accuracy of a standard classifier (same architecture as GAN
counterpart), followed by the accuracy of GAN classification
algorithm.

BCE(D(G(z)), 0), and the generator loss is defined as
LG(z) = BCE(D(G(z)), 1), where BCE is binary cross-
entropy, D is the discriminator, G is the generator, x is
real, labeled data, and z is a random vector. For our clas-
sifier, the loss is defined as LC(x, y, z) = CE(C(x), y) +
λCE(C(G(z)), argmax(C(G(z))) > t), where λ is the un-
supervised adversarial loss weight, CE is cross entropy loss,
C is the classifier, and t is the pseudo-label threshold.

The first component of the classifier loss is the supervised
cross-entropy loss using real labeled data. The next compo-
nent is the unsupervised loss. We compute the cross-entropy
between generated data and corresponding hypothesized la-
bels. λ is a weight for the unsupervised loss, and similar
approaches have seen success in semi-supervised learning
regimes (using real instead of artificial data). We incorporate
λ to regularize our model, because generated images are only
meant to supplement real ones. The ”labels” for the unsuper-
vised loss are pseudo-labels, where we use the threshold t to
ensure only high-quality GAN generations are used.

Experimental Evaluation
Throughout our tests, we manipulated the number of sampled
used in the benchmark dataset SVHN (used for development
and testing) by percent size of the dataset to show the efficacy
of our algorithm in small datasets. To test our algorithm in a
small, fully-supervised dataset, we used a pneumonia chest
X-Ray dataset with just 5,863 images, or less than 10% of
SVHN’s size (Kermany, Zhang, and Goldbaum 2018).

Since the regular GAN approaches use a shared, two-
headed architecture, and our EC-GAN is unique because
the classifier is distinctly separate, we compared the perfor-
mance of the two methods. We found that EC-GAN performs
on par and occasionally better than a shared architecture in
small datasets (Table 1). Through our empirical analysis, we
contend that separating classification and discrimination and
supplementing classification with generated images are effec-
tive approaches for improving classification performance.

Additionally, we found EC-GAN performed much better
than the standard data augmentation and regularization pro-
cedures. Better generalization and improved classification
performance can often be achieved with more data, which
could explain why EC-GAN outperforms other methods with
augmentation and regularization. Our experimental results
justify the effectiveness of EC-GAN as a semi-supervised

Dataset Size (%) EC-GAN (%)

Classifier GAN

25 94.37 96.48
50 95.24 97.83
75 95.64 97.40

100 96.42 97.99

Table 2: The conditional version of EC-GAN is tested on the
X-ray dataset. The left value is the accuracy of a standard
classifier and the right value is the accuracy of EC-GAN.

approach for restricted fully-supervised classification.
For the chest X-ray dataset, we developed a conditional-

GAN. Since this dataset has a strong class imbalance, a con-
ditional GAN would prevent imbalance in the generated sam-
ples. The experimental results reported in Table 2 reflect
the strong performance by our EC-GAN. Our proposed ap-
proach improves classification, especially in realistic and
small datasets. Even in extreme scenarios, with just 200 la-
beled images, we achieved 90.9% accuracy.

Conclusion
We have presented EC-GAN, a novel generative model that
attaches an external classifier to a GAN to improve classifi-
cation performance in restricted, fully-supervised datasets.
Our proposed method allows classifiers to leverage GAN
image generations to improve classification, while simultane-
ously separating the tasks of discrimination and classification.
Our results showed that EC-GAN is effective and can be
used to improve image classification performance in small,
real-world datasets.
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