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Abstract

Given recurring interest in structured representations in com-
putational cognitive models, we extend a Bayesian scoring
procedure for comparing symbolic models of language gram-
mar. We conduct a case-study of modeling syntactic princi-
ples in German, providing preliminary results consistent with
linguistic theory. We also note that dataset and part-of-speech
(POS) tagger quality should not be taken for granted.

Recent advances in AI have brought back the controversy
between symbolic and connectionist approaches to knowl-
edge representation and learning (e.g., Lake et al. 2017).
While great progress in AI has been brought about by neu-
ral models, they in general require a lot of training data to
achieve human-like generalization, while children make cor-
rect generalizations and learn their native language based
on substantially fewer examples (Tenenbaum et al. 2011;
Xu and Tenenbaum 2007; Chomsky 1965). One position
holds that this sample size problem is remedied by resort-
ing to an initial bias. Specifically, many linguists argue that
symbolic hierarchical representations and compositionality
principles are indispensable for human-like language pro-
cessing and production (e.g., Crain and Nakayama 1987;
Chomsky 1965; Pelletier 1994; Lake et al. 2017). These
principles could potentially be incorporated as structural
constraints in models of natural language. One approach
to building and evaluating human-like symbolic language
models comes from the increasingly influential domain of
Bayesian learning (e.g., Xu and Tenenbaum 2007; Perfors,
Tenenbaum, and Regier 2011). In particular, Perfors, Tenen-
baum, and Regier (2011) indicate that a learner equipped
with domain-general Bayesian inference capacities favors
hierarchical phrase structure over linear phrase structure
given linguistic data representing input available to human
learners (i.e., from a child-directed speech corpus). Perfors,
Tenenbaum, and Regier (2011) represent several explicit hy-
potheses about syntactic structure as probabilistic grammars
which are compared via their Bayesian posterior scores
given training data, assuming a meta-grammar which gen-
erated those particular hypotheses. We note that the models
were all able to parse the entirety of the data they were com-
pared on, making them directly comparable via posterior
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scores. However, the inability to evaluate competing mod-
els that are supported by different data subsets severely lim-
its the power of modeling results due to the inevitability of
noise within the training data. Therefore, in this work we
aim to depart from strict Bayesian inference of the system
proposed by Perfors, Tenenbaum, and Regier (2011) to en-
able comparison of models corresponding to different data
subsets. To this end, we employ a case study of word-order
modeling in German, to additionally assess the quality of a
widely used child-language dataset in a language less stud-
ied than English.

Data Processing
Following Perfors, Tenenbaum, and Regier (2011), we de-
signed four probabilistic context-free grammars (PCFGs)
implementing rules consistent with different hypothe-
ses about the word-order of German: Subject-Verb-
Object (SVO), Subject-Object-Verb (SOV), SVO+Verb-
Second (SVO+V2) and SOV+V2 word orders, drawing from
a specific linguistic theory, among multiple, to specify dif-
ferent conceivable word orders. The SOV+V2 grammar was
hand-designed to approximate the basic syntactic structure
of standard German. The other three CFGs were derived
from the SOV+V2 grammar in order to preserve the encoded
syntactic knowledge unrelated to verb positioning phenom-
ena; about 80% of the CFG was identical across models.
We note that context-free grammars encode hierarchical sen-
tence structure, meaning that model length does not neces-
sarily correlate with the sentence complexity that they can
generate.

The grammars were trained and compared on adult speech
from the Leo corpus of the CHILDES dataset (MacWhin-
ney 2000). We preprocessed the dataset such that sentences
consisted of part-of-speech (POS) tags from the STTS tag
set rather than words. Upon closer inspection of the dataset,
we found many tagging and grammatical errors. Therefore,
we further preprocessed the data by excluding, among oth-
ers, typically incorrectly tagged filler words, nonwords and
short ungrammatical sentences which are unlikely to be rel-
evant for learning syntactic generalizations, leaving 160,635
utterances in the dataset. The remaining sentences still in-
cluded more tagging errors than we would have expected.

Though the SOV+V2 CFG was designed to parse Ger-
man, it was still only able to parse 48.98% of all POS-tagged
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sentences in the preprocessed dataset and only 21.29% of
74,758 unique POS strings. We found that it fit the data suf-
ficiently tightly in that it tended not to overgenerate, produc-
ing 1.45 parses per POS string. The other grammars were
able to parse even smaller proportions of the corpus. To de-
termine the extent to which residual errors left in the cor-
pus were to blame for this, we randomly sampled 100 POS
strings and their corresponding sentences that the SOV+V2
CFG could parse and 100 that it could not, and manually
determined their grammaticality as native German speakers.

We calculated the error proportion upper bounds for the
POS strings that the SOV+V2 CFG could not parse to be
0.19 (p < 0.05), and 0.20 for the POS strings that the CFG
could parse. Using these error proportions, we determined
the sensitivity of the SOV+V2 CFG to be 0.808 and its
specificity to be 0.802, concluding that the low proportion of
parsed sentences was due to errors in the data. Through this
statistical analysis of the SOV+V2 CFG’s ability to capture
grammatical German POS strings and reject ungrammati-
cal ones, we approximated the percentage of grammatical
errors in the processed corpus itself to be 68% of the to-
tal number of unique POS strings. With the assumption that
each unique ungrammatical POS string only occurs once in
the preprocessed Leo corpus, we conservatively estimated
that 31.65% (50,854/160,635 total POS strings) of the entire
preprocessed corpus were ungrammatical POS strings. Sim-
ilarly, the proportion of ungrammatical or fragment string to-
kens in the corpus used by Perfors, Tenenbaum, and Regier
(2011) was 30.3%. Therefore, we argue that upon recording,
transcribing and processing, this data might not accurately
represent a child’s linguistic input because we deem adults
extremely unlikely to produce ungrammatical speech over
30% of the time in their native language, questioning the
suitedness of such a dataset for accurate language learning
modeling.

Bayesian Model Evaluation
Finally, we compared how likely a Bayesian learner is to ar-
rive at a particular hypothesis about the word order of Ger-
man from observing primary linguistic data only. Although
we found that the data on which we evaluated our grammars
might not have sufficient quality to draw strong conclusions
about the models’ performance or about language learning
in general, we nevertheless propose methods for applying
Bayesian scoring to symbolic linguistic models trained on
different datasets.

The different grammars were compared using their poste-
rior probability given the preprocessed data they could parse,
computed via Bayes’ rule from their prior probability under
a generative meta-grammar and the likelihood of the data un-
der each grammar (as proposed by Perfors, Tenenbaum, and
Regier 2011). This prior computation generally preferred
simpler grammars and, importantly, assumed a uniform prior
over the different word-order hypotheses. Crucially, the like-
lihood components of the posterior grammar scores were
not directly comparable under strict Bayesian inference be-
cause they were each calculated over the different subsets
parsed by each of the grammars, penalizing models gener-
alizing to more data (i.e., the SOV+V2 grammar). Further,

G P (G,T |D) P (D|G,T ) P (G|T )
SOV -851,853.98 -849,792.21 -2,061.77
SVO -418,402.09 -416,430.19 -1,971.90
SVO+V2 -322,738.54 -320,747.86 -1,990.68
SOV+V2 -223,738.53 -221,574.62 -2,163.91

Table 1: Log prior of grammar G | type T , log likelihood of
data D with applied corrections and PCFGs’ log posteriors

we note that the likelihood component strongly reflected the
number of rules necessary to generate a particular sentence,
thereby penalizing the SOV+V2 grammar for parsing more
complicated sentences. To combat this, we propose to com-
pute a conservative estimator for the tightness-of-fit of a
grammar to the data by normalizing the average sentence
log-likelihood by the length of the sentence. To create an
estimator for the model’s generalization potential to differ-
ent grammatical phenomena, we additionally weighed this
mean of the normalized sentence log-likelihood by the pro-
portion of unique sentence types that the PCFG can parse.
The results of this scoring procedure are reported in Table 1.
With the additional calculations called for by our system to
counteract the compounding effects of parsing different sub-
sets of the data, our system preferred the expected SOV+V2
grammar.

Conclusion
We propose a computational language acquisition modeling
approach that combines structured representations and sta-
tistical inductive inference in a more flexible way. It provides
a starting point for developing scalable comparison methods
for models involving symbolic components. In addition, we
provide evidence that corpus and POS tagger quality should
not be taken for granted.
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