The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Dethroning Aristocracy in Graphs via Adversarial Perturbations — (Student
Abstract)

Adarsh Jamadandi and Uma Mudenagudi

KLE Technological University, Hubli, India.
{adarsh.jamadandi, uma} @kletech.ac.in

Abstract

Learning low-dimensional embeddings of graph data in
curved Riemannian manifolds has gained traction due to their
desirable property of acting as effective geometrical induc-
tive biases. More specifically, models of Hyperbolic geom-
etry such as Poincaré Ball and Lorentz/Hyperboloid Model
have found applications for learning data with hierarchical
anatomy. Gromov’s hyperbolicity measures whether a graph
can be isometrically embedded in hyperbolic space. This pa-
per shows that adversarial attacks that perturb the network
structure also affect the hyperbolicity of graphs rendering
hyperbolic space less effective for learning low-dimensional
node embeddings of the graph. To circumvent this problem,
we introduce learning embeddings in pseudo-Riemannian
manifolds such as Lorentzian manifolds and show empiri-
cally that they are robust to adversarial perturbations. Despite
the recent proliferation of adversarial robustness methods in
the graph data, this is the first work exploring the relation-
ship between adversarial attacks and hyperbolicity while also
providing resolution to navigate such vulnerabilities.

Introduction

Graph nodes embedded in Euclidean space incur large dis-
tortions and are unsuitable for modeling real-world graphs
such as Social, Internet or Biological Networks, this has
prompted for introduction of curved Riemannian manifolds
such as hyperbolic geometry to model hierarchical data
(Nickel and Kiela 2017). Gromov’s §-hyperbolicity mea-
sures the Tree-likeliness of the graphs, which helps decide if
a given graph is suitable for embedding in hyperbolic space.
The lower the §-hyperbolicity, the more hyperbolic the graph
is (0 = 0 for Trees) and more suitable hyperbolic space is,
as an embedding space.

Authors (Borassi, Chessa, and Caldarelli 2015) have
coined the term ‘aristocratic’ to graphs with smaller hyper-
bolicity, indicating only few vertices controlling a larger as-
pect of the network. In this paper, we show that introducing
adversarial perturbations that disrupt the network structure,
also destroys the hyperbolicity of graphs, effectively making
hyperbolic geometry less effective as an embedding space
and dethroning aristocracy.
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Adversarial attacks are deliberate data perturbations that
degrade Deep learning models’ performance drastically. The
idea has been recently extended to explore the robustness of
graph models as well (Bojchevski and Giinnemann 2019).
However, this is the first work that explores the relationship
between adversarial attacks on unsupervised node embed-
dings that use models of hyperbolic geometry as embed-
ding space and hyperbolicity. We hypothesize and empiri-
cally show that embedding graphs in Lorentzian manifolds,
is more robust to vulnerabilities.

Gromov’s Hyperbolicity

Gromov’s (9) hyperbolicity introduced by (Gromov 1987)
helps ascertain if the graph is inherently hyperbolic. Math-
ematically, we define hyperbolicity as - Let {a, b, c,d} be
the vertices of the graph G(V, E) and let (S = {S; =
d(a,b) + d(d,c)}, {S2 = d(a,c),d(b,d)}, and {S3 =
d(a,d) + d(b,c)}). The §(a, b, ¢, d) is given by

8(a,b,c,d) hyp(a, b, ¢, d)

(D

max

2 {a,b,c,d}eV(G)
where, hyp(a, b, ¢, d) = Difference of two largest values in
S. The graph G(V, E') can be viewed as a metric space with
d(.) giving distance (geodesic) between vertices.

Attack Model

We use the attack model introduced by authors (Bojchevski
and Giinnemann 2019) -

. max
Ae{0,1}NxN
where, Z* = miny L(A, Z), subjected to ||A — Ao = 2f.
We assume the attacker is restricted to modifying only few
entries f = ||A — Al|[o = 2f of the adjacency matrix A
resulting in A. The perturbations introduced strive to bring
down the quality of the embeddings, this is measured by the
loss function £(A, Z) of the model under attack. In prac-
tice, the final outcome is either addition/flipping of random
edges, resulting in poisoning of the graph under considera-
tion.

A* = arg E(/Al, zZ) 2)

Results and Discussions

We advocate for using Lorentzian manifolds as embedding
space for graph data. We consider two types of Lorentzian



0.8
0.6
0.4

0.2

ROC curve (Area=0.50)

0.4

0.0

0.0 0.2 0.6 0.8 1.0

s

Figure 1: We try to embed PolBlogs in the Poincaré disk
model. It is evident from the graph, that hyperbolic space
fails to embed graphs with high hyperbolicity.
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Figure 2: For a random Directed Acyclic Graph with § =
6.5, we try to embed in both de Sitter space (Top Row) and
hyperbolic space (Bottom Row). From the figure, its evident
that, graphs, especially DAGs are more naturally embedded
in Lorentzian manifolds.
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(a) (L)Cora before attack. (R)Cora after attack.
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(b) (L)Clteseer before attack (R)Clteseer after at-
tack.

Figure 3: The first column shows the accuracy of graph em-
beddings quantified by the AUC curve before introducing
the adversarial perturbations. The second column shows the
accuracy after poisoning the graph.
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Dataset  EdgeFlips  do1d  Onew
Cora 1000 2.0 2.5
Citeseer 1000 3.0 3.5
PolBlogs 1000 1.0 1.5

Table 1: We compute -hyperbolicity of standard graph data
sets before and after introducing adversarial perturbations.
Its evident from the Table below that hyperbolicity increases
for random adversarial attacks rendering embedding in hy-
perbolic space ineffective.

manifolds and employ Multi-dimensional scaling algorithm
(Clough and Evans 2017) to embed datasets - Cora, Citeseer
and Polblogs.

1. Minkowski space - A 4-dimensional pseudo-Euclidean
space with three spatial dimensions and one time di-
mension. {z?, 2% x;} represent the time co-ordinates and
{xF ,xf} represent spatial co-ordinates and c is the speed
of light, which indicates the speed of flow of information
in this case. The metric is given by,

d
dyv, ; = - x —x 2+Zm —a: 3)
k=1

de Sitter space - A maximally symmetric Lorentzian man-
ifold. Its distance metric is given by,

dges, (x,y) = Aarcosh (<X/\’2y>£
Table 1 shows the increase in hyperbolicity for 1000 ran-
dom edge flips. Figure 3a and b, shows the accuracy of graph
embedding in the Minkowski space before and after poison-
ing the graph structure. We compare the performance with
graph embedding in Poincaré disk model given by

cosh({d; j) = cosh(¢r;) cosh(¢r;)—
sinh({r;) sinh(¢r;) cos(m — |7 — |6; — 0;])

“4)

6))

From Figure 1, it is clear that, hyperbolic space fails to
accurately embed the graph. To further test the capacity
of Lorentzian manifolds, we generate a random DAG with
0 = 6.5 and embed the graph in both de Sitter space and
Poincaré disk. from Figure 2 we can see that de Sitter space
fairs better in handling graphs with high hyperbolicity.
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