
HetSAGE: Heterogenous Graph Neural Network for Relational Learning (Student
Abstract)

Vince Jankovics, Michael Garcia Ortiz, Eduardo Alonso
Artificial Intelligence Research Centre (CitAI)

City, University of London
{vince.jankovics, michael.garcia-ortiz, e.alonso}@city.ac.uk

Abstract
This paper aims to bridge this gap between neuro-symbolic
learning (NSL) and graph neural networks (GNN) approaches
and provide a comparative study. We argue that the natural
evolution of NSL leads to GNNs, while the logic program-
ming foundations of NSL can bring powerful tools to im-
prove the way information is represented and pre-processed
for the GNN. In order to make this comparison, we propose
HetSAGE, a GNN architecture that can efficiently deal with
the resulting heterogeneous graphs that represent typical NSL
learning problems. We show that our approach outperforms
the state-of-the-art on 3 NSL tasks: CORA, MUTA188 and
MovieLens.

Introduction
Neuro-symbolic learning (NSL) aims to combine the ben-
efits of neural networks (NN) and logic based reasoning to
efficiently identify patterns in relational data (França, Za-
verucha, and d’Avila Garcez 2014). Graph neural networks
(GNN) have been an increasingly popular field in the last
decade, with models that allow to identify patterns from
graph structured data (Hamilton, Ying, and Leskovec 2017).
Many logic programs can be formulated as a knowledge
graph or can be transformed into one without loss of infor-
mation and node classification models can be utilised in a
way that is directly comparable to NSL techniques. There-
fore we argue that certain GNNs aim to solve the same prob-
lem as NSL systems, but more efficiently, as they fit the
structure of the problem better, similarly to how convolu-
tional NNs are more suitable for spatial information than
fully-connected NNs.

In NSL, propositionalisation based techniques rely on
the transformation of a complex relational database into an
attribute-value form that enables the use of NN models,
such as CILP++ (França, Zaverucha, and d’Avila Garcez
2014), considered state-of-the-art in NSL. In CILP++ the
encoding of the data poses significant limitations in terms
of flexibility, since each relation is explicitly included in
the encoding, which is also problematic from a scalability
perspective. Contrary to CILP++, GNNs preserve and ex-
ploit the structure of the data. Furthermore, GNNs can han-
dle arbitrary number of connections between entities since

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

they rely on learned functions that are applied across the
nodes of the graph. Our proposed model, HetSAGE has
similar components to previous GNN architectures, such as
the sampling and aggregation from GraphSAGE (Hamilton,
Ying, and Leskovec 2017), the edge feature handling from
MPNN (Gilmer et al. 2017) and the heterogeneous embed-
ding from HetGNN (Zhang et al. 2019).

Our contributions are as follows: (i) we provide a com-
parison between CILP++ and HetSAGE to solve relational
learning tasks, (ii) we propose a method to transform a logic
program to a graph, and (iii) we study the inclusion of the
target labels in the neighbouring nodes, which is similar to
the approach described in (Zhou et al. 2004). Our study also
shows that the natural evolution of NSL leads to GNNs, pro-
viding a significant boost to the performance of state-of-the-
art in NSL. Additionally, we show how logic programming
can be used alongside GNNs to formulate and enrich the
graph database for the GNN.

Methods
Knowledge representation Logic programming for-
mulates the problem as a set of clauses in the form of
head:-body which represents body =⇒ head.
Rules with variables provide a way to express gen-
eral relationships between entities, e.g. the rule
p2(X,Y):-p1(X,Z),p1(Z,Y) translates to the first or-
der logic formula: ∀ X,Y ∃ Z, p1(X,Z) ∧ p1(Z, Y) =⇒
p2(X,Y). We utilise this equivalence to transform the logic
program D to its grounded form Dg that only contains
variable free terms but still entails the same consequences
S, i.e. D |= S ⇐⇒ Dg |= S. A typical translation from
logic programs to graphs would map arity 0 terms to nodes,
arity 1 to node attributes, arity 2 to labelled edges and higher
arity terms can be transformed using reification (Grewe
2010).

HetSAGE Our method uses a uniform sampling technique
similar to GraphSAGE (Hamilton, Ying, and Leskovec
2017), but we create non-overlapping subgraphs for each tar-
get node (see Fig. 1). The first step in HetSAGE is the het-
erogeneous embedding that maps each node’s feature vector
in a shared embedding space. The embedding h for node v,
type t, is calculated according to hv = fh

t (x
v) where fh

t is a

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15803

Figure 1: Our neighbourhood sampling: the initial graph in
the circle with 3 node types (e.g. movie, actor, director)
and blue nodes as targets. The 3 sampled neighbourhoods
show the 2-step walk sampled around each target node. Tar-
get nodes in the sampled neighbourhood (gray) do not have
the target label included (e.g. genre), while the surrounding
movie nodes have them.

NN, and xv is the node feature vector. The next step is prop-
agating the information between the nodes along the edges
by the message passing module and a readout layer outputs
the predictions, according to:

mv
i+1 =

∑
u∈Ns(v)

fm(evu)hu
i (1)

hv
i+1 = fa

i (h
v
i ,m

v
i+1) (2)

yv = fr(hv
N) (3)

where evu is an edge feature, hv
i+1 is the hidden state of node

v in layer i, and fm, fa
i , fr are NNs. The final node labels

yv are only calculated for target nodes. We included batch
normalisation applied to hv

i+1 after each message passing
unit and layer normalisation for hv

i and mv
i+1 individually

before they are passed to fa
i . This helps to balance the infor-

mation carried forward from the node and the information
from its neighbourhood. We used cross-entropy as loss.

Experiments
We conducted experiments on MovieLens, CORA and
MUTA188 from the Relational Dataset Repository1. The
results are shown in Table 1. MUTA188 consists of 188
molecules, but we represent the data as a single graph with
atoms as nodes and bonds between them and an addi-
tional node type drug that has the target labels assigned.
This representation matches how the other two problems are
defined, providing a more fair comparison. For CORA, our
model is capable of dealing with the original problem setting
with 7 classes, but CILP++ can only act as binary classifier
(hence the N/A in the table). For comparison purposes we
run the experiments with binary labels as well, assigning 1
to every paper that has the label neural networks and 0 other-
wise (shown as CORA-binary). For the CILP++ experiments
we used the architecture and hyperparameters from (França,
Zaverucha, and d’Avila Garcez 2014). We present a com-
parison between three different versions of CORA, one with
the bag-of-words encoding of the content of each paper and
the paper labels, one without the content (no words) and one
without the labels (no labels) to evaluate the benefit of label
propagation.

1https://relational.fit.cvut.cz/

Dataset CILP++ (%) GNN (%)
MUTA188 89.74 (±5.32) 92.11 (±4.40)
CORA-binary no words 70.34 (±0.00) 93.68 (±2.15)
CORA-binary no labels 70.34 (±0.00) 92.92 (±0.98)
CORA-binary 69.70 (±0.07) 91.98 (±2.91)
CORA-multi no words N/A 88.17 (±0.86)
CORA-multi no labels N/A 81.85 (±0.58)
CORA-multi N/A 83.38 (±1.44)
MovieLens 80.12 (±0.76) 80.22 (±0.80)

Table 1: Accuracies averaged over 10 random train/test split.
HetSAGE outperforms CILP++ on each benchmark. CORA
without the contents of the papers outperforms the experi-
ments that include them, which could be because the prop-
agated labels carry more information than the contents, and
the model does not need to distinguish between the noise and
the more relevant information. Including the labels seem to
improve the performance of the model.

Conclusion
We demonstrated that HetSAGE is capable of handling
problems defined as a logic program and that our model
outperforms CILP++. We argue that GNNs in general are
more suitable for addressing structured data than NSL. We
additionally implemented a transformation that takes a logic
program and generates a graph from it. This can also pro-
vide a powerful tool to include additional information (or
common sense) in the data. Future work comprises conduct-
ing a larger scale comparison on what additional informa-
tion helps the model and a more thorough hyperparameter
and architecture search on HetSAGE.

References
França, M. V. M.; Zaverucha, G.; and d’Avila Garcez, A. S.
2014. Fast Relational Learning Using Bottom Clause Propo-
sitionalization with Artificial Neural Networks. Machine
Learning 94(1): 81–104. ISSN 1573-0565.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. arXiv:1704.01212 [cs] .
Grewe, N. 2010. A Generic Reification Strategy for N-Ary
Relations in DL. In OBML 2010 Workshop Proceedings.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In Guyon, I.;
Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vish-
wanathan, S.; and Garnett, R., eds., Advances in Neural In-
formation Processing Systems 30, 1024–1034.
Zhang, C.; Song, D.; Huang, C.; Swami, A.; and Chawla,
N. V. 2019. Heterogeneous Graph Neural Network. In Pro-
ceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD ’19,
793–803. New York, NY, USA: Association for Computing
Machinery. ISBN 978-1-4503-6201-6.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2004. Learning with Local and Global Con-
sistency. In Advances in Neural Information Processing Sys-
tems, 321–328.

15804

