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Abstract

Accelerometric gait identification systems should ideally be
robust to changes in device orientation from the enrollment
phase to the deployment phase. However, traditional
Convolutional Neural Networks (CNNs) used in these
systems compensate poorly for such distributional shifts. In
this paper, we target this problem by introducing an SO(3)-
equivariant quaternion convolutional kernel inside the CNN.
Our architecture (Quaternion CNN) significantly outperforms
a traditional CNN in a multi-user gait classification setting.
Additionally, the kernels learned by QCNN can be visualized
as basis-independent trajectory fragments in Euclidean space,
a novel mode of feature visualization and extraction.

Introduction
Accelerometric gait identification systems have increasingly
embraced convolutional neural networks (CNNs) in lieu
of hand-crafted features and shallow ML approaches
(Gafurov 2007). These systems entail an enrollment phase
in which the CNNs are trained to distinguish among a
set of enrolled users by their gait (Gadaleta and Rossi
2018), and a deployment phase where newly presented gait
cycles are classified as belonging to one of the enrolled
users. As long as the user maintains the same device
orientation, these CNNs perform with high accuracy in the
deployment phase. However, they experience a catastrophic
drop in accuracy if the user changes the orientation.
This device-flip and the resulting distributional shift are
typically tackled by either using only the acceleration
magnitude, or by explicitly performing rotation invariant
transforms (Gadaleta and Rossi 2018). The first option
lowers the accuracy by discarding the rich 3D spatial
information in the input accelerometric tensors, and the
second option is both computationally expensive and adds
to the software complexity of the system, especially for on-
device implementations.

We instead incorporate rotation invariance inside the
CNN architecture by introducing a novel convolutional
kernel which leverages quaternion representations of
spatial rotations to learn SO(3)-equivariant maps between
trajectory fragments in R3. Such kernels can then be stacked
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to form a network which is agnostic to device orientation
and instead learns to recognize basis-independent gait
signatures. Our work differs from a number of existing
SO(3)-equivariant architectures (Thomas et al. 2018) in
that it operates on arrays of vectors, not featurized point
clouds or volumetric data—that is, it is not permutation
invariant, since input gait cycles are properly viewed as a
vector time series, not a point cloud or shape. It also differs
from previous Quaternion CNNs (Zhu et al. 2018) which
leverage quaternion algebra for parameter efficiency, but do
not operate on spatial data.

Method
A QCNN kernel takes in a linear array of quaternions,
performs a convolution-like operation on sliding windows
of the input array, and outputs another array of quaternions.
A gait cycle is a linear array of accelerometric vectors in R3;
we represent such vectors as pure quaternions and consider
a general quaternion to be pair of a real number and a vector:
r̂ = r+ r. We also make use of the representation of spatial
rotation as quaternion conjugation: if r̂ = r+r, then r̂v̂r̂−1

yields a quaternion whose vector part is v rotated by an
angle θ = 2arccos r/|r̂| about the axis defined by r and
whose real part is unchanged.

Let a window of quaternions q̂0, q̂1, . . . , q̂2l be the input to
a single-channel convolutional filter of length 2l + 1 . Then
the output of the filter for that window is

f(q̂0, q̂1, . . . , q̂2l) =
2l∑
i=0

ai(q̂i + bi)(q̂l + ci)q̂i(q̂l + ci)
−1

where ai, bi, ci ∈ R are the learnable parameters of
the filter. This output is itself a quaternion, and is
equivariant under 3D rotations of the vector part of the
input. That is, for any r̂ ∈ H, r̂f(q̂0, q̂1, . . . , q̂2l)r̂−1 =
f(r̂q̂0r̂

−1, r̂q̂1r̂
−1, . . . , r̂q̂2lr̂

−1).
Quaternion convolutional kernels can be stacked with no

nonlinearity required between layers, as the composition
of multiple convolutions is not reducible to a single
convolution. The last quaternion layer can be joined to real-
valued layers by just taking the magnitude q̂ → |q̂| of each
quaternion to construct a deep, rotation-invariant classifier.
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Dataset QCNN Standard CNN

Training (n = 529) 79.0% 83.3%
Validation (n = 106) 57.7% 74.5%
Testing (n = 635) 46.5% 4.4%

Table 1: Mean classification accuracies across 10 training
runs on the three datasets in the cotemporal experiments.

Experiments
We compare against standard CNNs on two tasks. In
the cotemporal experiments, gait cycles are recorded
from users simultaneously carrying two devices with
opposite orientations — one for training/enrollment and
one for testing/deployment. This setup mimics the case of
users enrolling in one orientation, but presenting another
orientation to authenticate. In multi-user experiments, we
examine a larger cohort for whom cotemporal data is not
available, and randomly rotate the gait cycles to generate
orientation-agnostic training and test sets. By training the
CNN on rotated data, we are also able to evaluate the
efficacy of data augmentation.

Cotemporal experiments We enroll a cohort of eight
users who collectively generated 635 gait cycles in each
orientation. The cycles in one orientation were split 529:106
train-val, and all 635 cycles of the other orientation were
used for testing. We use a 4-layer network for both the CNN
and QCNN; the CNN has 213k parameters while the QCNN
has 59k parameters.

The results, averaged across 10 trials, are shown in Table
1. When there is only one fixed orientation, the standard
CNN performs better than the QCNN. However, upon
encoutering the test gaits in a different orientation, the CNN
suffers a sharp drop in accuracy. The QCNN, on the other
hand, is much more robust and has a 10x fold improvement
over the CNN on the test set.

Multi-user experiments We use data from 100 users
consisting of 1000 train/val and 100 test cycles per user. We
then compare QCNN to a standard CNN when trained and
tested on the original gaits, when trained on the original gaits
and tested on the rotated gaits (similar to the cotemporal
setup), and when both trained and tested on the rotated
gaits (corresponding to training with data augmentation),
When the training and test sets are both in their original
orientations, the standard CNN has higher accuracy, but its
performance drops precipitously when the test set is freely
rotated (Table 2). Importantly, data augmentation — that is,
training on rotated data — is unable to rescue the standard
CNN to the performance level of the QCNN.

Kernel visualization We can visualize the features
learned by the first quaternion layer as trajectory fragments
in Euclidean space defined with respect to the origin and
a chirality but independent of the axes (Figure 1). This is
different from the features detected by shape and point-
cloud networks, which are independent of the origin and
oftentimes also reflection-equivariant. While kernels may

Train set/Test set QCNN Standard CNN

Original/Original 33.28% 36.82%
Original/Rotated 33.28% 17.40%
Rotated/Rotated 33.41% 29.32%

Table 2: Top-5 test classification accuracies on the three
datasets in the multi-user experiments.

Figure 1: Six kernels from the first layer of the trained
QCNN from the multi-user experiments. Each kernel is
visualized by a trajectory fragment which maximizes the
magnitude of the output quaternion, shown as an arrow.

appear to correspond to similar input features, they can map
them to different outputs. Similarly, any single kernel may
be activated by multiple inputs. QCNNs can therefore learn
rich representations over the input space of gait cycles.

Conclusions
We have presented a neural network specifically tailored
for gait-invariant accelerometric gait classification. This
network outperforms standard convolutional networks, is
parameter-efficient, and learns features which are easily
visualized in 3D. Future work may focus on theoretical and
empirical analyses of training and parameter initialization.

Ethics statement We have described a technique that
seeks to improve a privacy-enhancing passive biometric
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