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Abstract

Recently, a Quantum Probability Drive Network (QPDN) is
proposed to model different levels of semantic units by ex-
tending word embedding to complex-valued representation
(CR). The extended complex-valued embeddings are still in-
sensitive to polarity causing that they generalize badly in sen-
timent analysis (SA). To solve it, we propose a method of en-
coding sentiment information into sentiment words for SA.
Attention mechanism and an auxiliary task are introduced to
help learn the CR of sentiment words with the help of the
sentiment lexicon. We use the amplitude part to represent
the distributional information and the phase part to represent
the sentimental information of the language. Experiments on
three popular SA datasets show that our method is effective.

Introduction
Word embedding is a state-of-the-art technique to map
words from semantic space to low-dimensional vector space
based contextual information. Words are represented by tens
or hundreds of dimensions of real-valued vectors. Since such
training methods only consider the distributional informa-
tion of the language and ignore other information such as
polarity. A significant problem is different words with simi-
lar contexts will get similar vectors but correspond to oppo-
site language polarities, such as “good” and “bad”.

In Wang et al.’s work, they firstly extend word embedding
to CR and model different levels of semantic units in a Se-
mantic Hilbert Space (SHS) over the complex field. Their
focus is utilizing the non-linear combined property of CR
to capture implicit semantics. In this paper, we put more at-
tention on how to use complex-valued embedding to model
the polarity of language. Firstly, we use the attention mech-
anism to distinguish sentiment words from neutral words.
Moreover, an auxiliary task is introduced to help learning
the CR of sentiment words by means of the sentiment lexi-
con. Specifically, we use the amplitude part to represent the
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distributional information and the phase part to represent the
sentimental information of the language. A series of sys-
tematic experiments are conducted on a Lexicon-extended
Quantum Probability Driven Network (LQPDN) under the
framework of quantum theory (Nielsen and Chuang 2002).

Proposed Method
With Dirac’s notation, an unit vector ~µ and its transpose ~µT
are denoted as ket |u〉 and bra 〈u|.

Quantum Probability Drive Network
Let a sentence S with N words [w1, w2, . . . , wN ] be
an input of QPDN. Firstly we embed the input into a
complex-valued matrix [|ω1〉 , |ω2〉 . . . |ωN 〉] and |ωi〉 =[
ri,1e

iθi,1 , ri,2e
iθi,2 . . . ri,De

iθi,D
]
, where D is the dimen-

sion, r is the amplitude part and θ is the phase part of ωi.
The density matrix ρ is used to fuse word information. It is
computed by outer product with each word vector and its
conjugate transpose vector.

ρ =

N∑
i

p(wi) |ωi〉 〈ωi| (1)

where p(wi) is the weight of word with
∑N
i p(wi) = 1.

Finally a set of projectors M = {|mi〉 〈mi|}Ki=1 are cho-
sen to measure the mixed system ρ, which is similar to the
operation of convolution kernel in CNN. The results repre-
sent the probabilities of the ρ fall onto the respective mea-
surement operators. The training loss of QPDN LQPDN is
the cross-entropy loss between predicting labels and gold-
standard labels in the dataset.

Lexicon Based Encoding Methods
A merged lexicon L helps us encode sentiment information
into the complex-valued embedding. We firstly assign higher
weights with sentiment words than other neutral words. For
each word in S, we can define different weights as followed:

p (wi) =
exp (λωAS (wi))∑N
i=1 exp (λωAS (wi))

, (2)

AS (wi) = |score (wi)| . (3)
In Eq.3,AS (wi) is the absolute score of wi in L. The hyper-
parameter λω in Eq.2 shows the degree of distinction be-
tween sentiment words and neutral words..
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Top 10 Similar Words

Real Embedding Complex Embedding

optimistic pessimistic confident upbeat hopeful pleased
disappointed satisfied gloomy expect uncer-
tain

upbeat confident hopeful pessimistic pleased
expect surprised concerned disappointed opti-
mism

disappointed surprised pleased delighted frustrated shocked
worried unhappy satisfied thrilled confident

surprised pleased shocked thrilled frustrated
worried delighted unhappy embarrassed sorry

Table 1: Top-10 similar words of samples in different embeddings

In addition, we simultaneously predict polarities of those
sentiment words in S as an auxiliary task when predicting
the label of S. Supposing R sentiment words are chosen, we
strip out their phase embeddings [θ1, θ2, . . . , θR]. Then take
them as the inputs of Sentiment Words Predicting Network
(SWPN) and follow by a fully-connected layer with softmax
function. The predicting sentiment score fpw (wi) for a word
wi is:

fp
w (wi) = softmax (w2σ (w1θi + b1) + b2) , (4)

where w1, w2, b1 and b2 are trainable parameters, and σ is
the sigmoid function. Let fgw (wi) be the gold-standard sen-
timent score for wordwi. The target loss function for SWPN
is

LSWPN =

C∑
j=1

R∑
i=1

CE (fp
w (wji) ,f

g
w (wji)) , (5)

where wji is the i-th sentiment word in the j-th sentence, C
is the batch size and CE(·) represents the categorical cross-
entropy loss function.

Because the above two tasks share the same word embed-
dings, jointly learning them can take full use of sentiment
lexicon from word and sentence levels. It is conducive to
learn sentiment sensitive word embeddings. Finally, the tar-
get loss function of entire LQPDN is defined as:

L = LQPDN + γ ∗ LSWPN, (6)

where γ is a hyper-parameter to control the degree of adjust-
ing phase parameters.

Experimental Evaluation
We conduct experiments on MR, SST-1 and SST-2 three
popular sentence-level sentiment datasets. Baselines are
chosen including Multilayer Perception (MLP), Word2vec
and FastText Bag-of-Words as traditional methods with shal-
low networks, CNN (Kim 2014) and CNN+SentiNet (Ye, Li,
and Baldwin 2018) as deep learning methods with relatively
complex networks, as well as our base model QPDN. Table
2 summarizes the performance of different methods.

From Table 2, we can see group 2 universally outper-
forms group 1. Because CNN can learn and extract features
at higher level by convolution kernel. By introducing lexi-
con knowledge, indicators of experiments can be further im-
proved as shown in group 2. QPDN can achieve a relatively
competitive performance but not outstanding. Our proposed
model outperforms all the baselines. It reflects the effective-
ness of our method of encoding sentiment information into
the phase part of complex-valued embedding.

Model MR SST-2 SST-1

MLP 77.3 79.5 39.0
Word2vec BOW 77.7 79.7 37.5
FastText BOW 78.2 80.6 40.3

CNN 78.3 83.5 43.2
CNN+SentiNet 79.6 84.2 44.0

QPDN 79.8 83.9 43.9
LQPDN 80.8 84.7 46.6

Table 2: The comparison results of classification accuracy
over three datasets. The best scores in bold.

To test our method more intuitively, we choose two words
“optimistic” and “disappointed” in SST-2 and output the
top 10 similar words in L with them as shown in Table
1. Table 1 compares the Glove in 100 dimensions and the
post-trained complex-valued embedding. Those words with
opposite polarity are marked in bold. Since the similar-
ity of words with the same polarity is improved while the
similarity of words with the opposite polarity is reduced,
complex-valued embeddings effectively distinguish these
words which have the similar representation in real-valued
embeddings.

Conclusion
In this paper, we adopt a new perspective from quantum the-
ory to model sentiment polarity of word embedding. Results
show that lexicon knowledge can be encoded into the phase
part of complex-valued word embeddings. The new word
embeddings generalize better in the overall experiments.
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