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Abstract

Deep neural networks have been shown vulnerable to
adversarial patches, where exotic patterns can result in
model’s wrong prediction. Nevertheless, existing ap-
proaches to adversarial patch generation hardly con-
sider the contextual consistency between patches and
the image background, causing such patches to be eas-
ily detected by human observation. Additionally, these
methods require a large amount of data for training,
which is computationally expensive. To overcome these
challenges, we propose an approach to generate adver-
sarial yet inconspicuous patches with one single image.
In our approach, adversarial patches are produced in a
coarse-to-fine way with multiple scales of generators
and discriminators. The selection of patch location is
based on the perceptual sensitivity of victim models.
Contextual information is encoded during the Min-Max
training to make patches consistent with surroundings.

Introduction
In recent years, adversarial patch-based attack (Brown et al.
2017) are proposed. However, existing adversarial patches
are usually ended being noticeable for the human observer
because of their exotic appearance. In addition, existing
methods (Brown et al. 2017; Liu et al. 2019) require a large
amount of quality data for training, which is computation-
ally expensive and time-consuming. Towards bridging re-
search gaps mentioned above, we propose a GAN-based ap-
proach to generate Adversarial yet Inconspicuous Patches
(AIP) trained from one single image. Our approach captures
the most sensitive area of the victim image, and applies ad-
versarial patches generated with well-crafted objective func-
tions. The goals of AIP are (1) pioneering in crafting adver-
sarial patches with only one image, and (2) evading human
detection while keeping attacks successful.

Adversarial yet Inconspicuous Patches
AIP Framework
The overview of our framework is illustrated in Figure 1.
Given a target image, an attention map with target model
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Figure 1: The overall framework of our approach.

is generated to capture the model’s sensitivity and decide
the patch position. Then we deploy a series of generator-
discriminator pairs {(G0, D0), . . . , (GK , DK)}, where K
is the total number of scales in the structure shown in Fig-
ure 2. These generator-discriminator pairs are trained against
an image pyramid of p and C. Correspondingly, the image
pyramid is expressed as {(p0, C0) . . . (pK , CK)}, where pi
and Ci are downsampled version of p and C with a factor
rK−i (0 < r < 1). In every scale, we execute adversar-
ial training for generators and discriminators. The genera-
tor Gi is expected to produce realistic patches, and the dis-
criminator attempts to distinguish generated samples from
pi. Since our approach requires the generated patches to be
consistent with original images, the input of discriminator
is the surrounding context Ci with the intermediate patches
pi placed right at the center of context. During training, the
background information will be encoded to the generator
progressively. Some examples of generated AIP are shown
in Figure 3.

Objective Functions
We take the ith scale to elaborate the training details. We
denote the output of Gi−1 as p̃i−1, then the input for Gi is

p̃i = Gi (zi, (p̄i−1) ↑r) , (1)

where p̄i−1 ↑r is the upsampled patch of p̃i−1.
The GAN adversarial loss can be written as

LGAN =Epi∼x logD(pi, Ci)+

Ezi∼Pz log(1−D(G(zi, p̃i−1), Ci)),
(2)

where Pz is a prior for noises. The loss for fooling target
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Figure 2: Structure of coarse-to-fine pipeline.

model f in untargeted attacks is

Lf
adv = Ex`f (x⊕ p̄i ↑r, y), (3)

where `f denotes the loss function used in the training of f ,
and y is the true class of x.

To stabilize the training of GAN, we add the reconstruc-
tion loss

Lrec = ‖Gi (zi, p̃i−1)− pi‖2 . (4)
We also add a total variation loss

Ltv =

h∑
a=0

w∑
b=0

(
∣∣∣p(a+1,b)

i − p(a,b)i

∣∣∣+
∣∣∣p(a,b+1)

i − p(a,b)i

∣∣∣)
(5)

as a regularization term to ensure that the texture of gen-
erated patches is smooth enough. Finally, the full objective
function in ith scale can be expressed as

L = Lf
adv + αLGAN + βLrec + γLtv, (6)

where α, β and γ are to balance the relative importance of
each loss. Then we train our generator and discriminator by
solving the min-max game as

argmin
Gi

max
Di

L (Gi, Di) . (7)

Experiment Results
White-box and Black-box Attack
To assess the attack capability of the adversarial patches
generated, we conduct experiments in white-box setting and
black-box setting respectively. Our data are randomly sam-
pled from ImageNet. Due to resource limitation, we first
choose 10 classes from ImageNet, and sample 10 images in
each class. For each image, 1000 patches will be generated.
Results are shown in Table 1.

Human Observer Evaluation
We evaluate the risks of adversarial patches prone to human
detection. We compete our synthetic patches with Google
Patch (Brown et al. 2017) and PS-GAN (Liu et al. 2019)
while including original images as the baseline. Note that
in each background image, all the patches are attached in
the same location for fairness. In total we collected 102 an-
swer sheets and the rates of images that are labeled as patch-
detected are summarized in Table 2.

White-box Black-box

Inception Google MNAS Mobile L2-Mobile

Persian Cat 100.00% 99.22% 85.62% 90.66% 80.33%
Zebra 98.53% 99.36% 85.58% 90.38% 74.40%
Balloon 99.52% 99.19% 79.68% 90.19% 82.70%
Desktop 99.72% 99.20% 82.23% 90.71% 77.86%
Table 99.95% 99.19% 86.13% 90.09% 87.09%
Hourglass 99.99% 99.20% 82.12% 90.59% 80.39%
Truck 99.97% 99.31% 85.34% 91.06% 75.65%
Street Sign 98.30% 99.21% 82.27% 90.10% 84.92%
Potpie 99.88% 99.30% 83.81% 90.85% 80.01%
Lakeside 99.91% 99.30% 84.00% 89.96% 71.85%

Average 99.58% 99.25% 83.68% 90.46% 79.52%

Table 1: White-box and Black-box attack success rates. The
victim model under white-box is InceptionV3 and the vic-
tims under black-box are GoogleNet, MNASNet (multip-
ier of 1.0), MobileNetV2, and MobileNetV2 with L2 robust
training (ε = 3).

Figure 3: Some AIP examples. At first glance, most of the
our adversarial patches are inconspicuous to observers.

Natural Image Google Patch PS-GAN AIP

12.15% 93.63% 89.90% 36.96%

Table 2: Average percentage of images that users label them
as Synthetic Patch Detected.

Conclusion
In this work, we propose an approach of GAN-based ad-
versarial networks trained with only one image to produce
adversarial patches. Our approach employs multiple scales
of generators with discriminators to generate patches in a
coarse-to-fine way. To equip our approach with stronger at-
tacking capability, we consider the perceptual sensitivity of
victim model by developing model attention mechanism.
Through extensive experiments, our approach shows satisfy-
ing attack capabilities, black-box transferabilities, and good
performance to evade detection in human evaluation.
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