
Toward Determining NFA Equivalence via QBFs (Student Abstract)

Hannah Miller and David E. Narváez
Golisano College of Computing and Information Sciences
Rochester Institute of Technology, Rochester, NY 14623

den9562@rit.edu

Abstract

Equivalence of deterministic finite automata (DFAs) has been
researched for several decades, but equivalence of nondeter-
ministic finite automata (NFAs) is not as studied. Equivalence
of two NFAs is a PSPACE-complete problem. NFA equiva-
lence is a challenging theoretical problem with practical ap-
plications such as lexical analysis. Quantified boolean for-
mulas (QBFs) naturally encode PSPACE-complete problems,
and we share our preliminary work towards determining NFA
equivalence via QBFs.

Motivation
Equivalence of two finite automata is a classic computa-
tional problem. For deterministic finite automata (DFAs),
Hopcroft’s algorithm (Hopcroft 1971) runs in near-linear
time. For nondeterministic finite automata (NFAs), the
equivalence problem is PSPACE-complete, and we are in-
terested in studying NFA equivalence. In addition to being a
challenging theoretical problem, practical uses of NFAs in-
clude lexical analysis in compilers (Aho et al. 2006).

Background
A finite automaton has a finite alphabet of symbols Σ, a fi-
nite set of states Q, a start state q0 ∈ Q, a transition function
δ to move between the states as the automaton reads an input
string w, and a set of final states F ⊆ Q where the string w
is accepted if the automaton ends on a final state after read-
ing w. The language L of a finite automaton is the set of
all strings which the automaton accepts, and two automata
are equivalent if they accept the same language L. For two
inequivalent automata, a witness string is a string that one
automaton accepts, but the other automaton rejects.

The key difference between a deterministic finite automa-
ton (DFA) and a nondeterministic finite automaton (NFA) is
the transition function δ to move between states. For DFAs,
δ : Q × Σ → Q indicates the next state after reading a
symbol σ at a state q, but for NFAs, δ : Q × Σ → P(Q)
indicates the set of possible next states after reading a sym-
bol σ at a state q.1 DFAs and NFAs accept the same class

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Formally, NFAs include so-called “ε transitions,” but due to
space constraints, we do not deal with ε transitions here. Our ex-

of languages, and an NFA can be transformed to a DFA that
accepts the same language. This transformation may incur
an exponential blow-up.

Boolean satisfiability (SAT) is the classic NP-complete
problem of determining whether a Boolean formula is satis-
fiable. In the encoding below, we describe our Boolean for-
mulas using conventional operations like ∧ (logical and), ∨
(logical or), and→ (implication). In practice, our implemen-
tation is based on the representation of Boolean formulas as
combinational circuits. The inputs of a circuit representing
the Boolean formula ϕ are the variables of ϕ. A satisfying
assignment is an assignment of values to the inputs of the
circuit such that the output of the circuit is True. If we in-
clude the quantifiers for all (written as ∀) and there exists
(written as ∃), we get a quantified boolean formula (QBF).

The problem of determining whether a QBF is true
(TQBF) is complete for PSPACE, a problem class that is
even harder than the NP-complete problem class (Stock-
meyer and Meyer 1973). Determining if two NFAs are
equivalent is a PSPACE problem, so QBFs can be used
to encode PSPACE problems. Recent work by Bonchi and
Pous (2013; 2015) uses bisimulation and coinduction to
show the equivalence of two NFAs. We are interested in
comparing the bisimulation approach to the TQBF approach
for different classes of NFAs, starting with randomly gener-
ated NFAs.

q1start q2

a, b

b
q′1start q′2 q′3

a, b

b b

Figure 1: NFAs N (left) and N ′ (right). The alphabet Σ is
{a, b}, and final states are drawn with a double circle. These
NFAs are inequivalent sinceN accepts the witness string ab,
but N ′ does not.

QBF Encoding
Consider two NFAs N and N ′ with transition functions δ
and δ′, respectively. For S and T two sets of states of N , S′

and T ′ two sets of states of N ′, and k an integer, we will

perimental implementation does support ε transitions.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15849

construct a QBF ϕk(S, S′, T, T ′) that is true if and only if
there exists a string w of length |w| ≤ k such that if N is
possibly in one of the states in the set S and N ′ is possibly
in one of the states in the set S′, then after reading w, N
will possibly be in one of the states in the set T and N ′ will
possibly be in one of the states in the set T ′.

For k a power of 2, we define ϕk recursively as follows.
For the case k > 1, we know ϕk(S, S′, T, T ′) is true if and
only if there exist intermediate sets of states R,R′ such that
for all sets of states X,X ′, Y, Y ′, we have2

∃R,R′. ∀X,X ′, Y, Y ′. [((S, S′, R,R′) = (X,X ′, Y, Y ′)

∨ (X,X ′, Y, Y ′) = (R,R′, T, T ′))

→ ϕk/2(X,X ′, Y, Y ′)]. (1)

For the base case of k = 1, we have

ϕ1(S, S′, T, T ′) =

[
S = T ∧ S′ = T ′

]
∨
∨
σ∈Σ

[
δ(S, σ) = T ∧ δ′(S′, σ) = T ′

]
, (2)

where δ and δ′ are naturally extended to take sets as param-
eters.

Intuitively, Equation 2 encodes that either the sets S, T
(resp. S′, T ′) are equal or when N (resp. N ′) is possibly in
one of the states in the set S (resp. S′) and reads one symbol
σ, then N (resp. N ′) will possibly be in one of the states in
the set T (resp. T ′).
N and N ′ are inequivalent if and only if there is a witness

string w of length at most k that is accepted by one NFA and
not by the other. This is to say that N and N ′ are inequiva-
lent iff

∃T. ∃T ′. [ϕk({q0}, {q′0}, T, T ′)

∧ (T contains a final state of N iff

T ′ does not contain a final state of N ′)], (3)

where q0 and q′0 are the start states of N and N ′, respec-
tively. An upper bound for k is 2n+n′

, where n and n′ are
the number of states in N and N ′, respectively (Hopcroft,
Motwani, and Ullman 2006). We keep our QBF length poly-
nomial with the same technique used to prove that QBF is
PSPACE-hard (Stockmeyer and Meyer 1973). The size of
Equation 1 is polynomial in the size of the input NFAs be-
cause there is only one recursive call per recursion level, the
recursion depth is O(n+ n′), and each call has one child.

Preliminary Experimental Results
For our preliminary work, we have generated random
NFAs inspired by the random method from Tabakov and
Vardi (2005). To create a random NFA, we fix the alpha-
bet Σ to be {a, b} and the start state as the single state q0.
We define the total number of states n, the probability of
choosing a state to be a final state pf , and the probability of

2When we write A = B for sets A and B, we mean that the
standard representation of A and B as arrays of Boolean values is
equal, i.e., A = B ≡

∧
(ai ↔ bi).

drawing a transition arrow between two states pδ . For every
possible directed pair of states q, q̃ ∈ Q and every possible
input σ ∈ Σ, we draw a transition arrow between q and q̃
with probability pδ .

We encoded the equivalence problem between pairs of
these random NFAs in the QCIR-14 format (Jordan, Klieber,
and Seidl 2016). From the list of winners of the last QBFE-
VAL competition, we selected the solvers that were com-
patible with our output format and runtime environment; in
the future, we plan to expand our runtime environment to in-
clude more solvers. We also used a conversion script3 to turn
these encodings into the QDIMACS format supported by
many QSAT solvers. The supplemental material4 includes
preliminary running times for these instances when using
popular QSAT solvers for the respective formats.

Future Work
We will extend the output format of our conversion tool to
directly support outputting formulas in the QDIMACS for-
mat. We will compare our QBF technique to Hopcroft’s al-
gorithm and the bisimulation approach of Bonchi and Pous.
To normalize the results among the different approaches, we
will develop and use the same merit function5 for each ap-
proach so that the programming language used (e.g., Bonchi
and Pous used OCaml) does not change the results. We will
investigate producing a short witness string from the certifi-
cate of satisfiability of our QBFs.

Acknowledgments
We thank Edith Hemaspaandra for her helpful comments.
Research supported in part by NSF grant DUE-1819546.

References
Aho, A. V.; Lam, M. S.; Sethi, R.; and Ullman, J. D. 2006. Com-
pilers: Principles, Techniques, and Tools. Pearson Education, Inc.,
2nd edition.

Bonchi, F.; and Pous, D. 2013. Checking NFA equivalence with
bisimulations up to congruence. In POPL ’13, 457–468. ACM.

Bonchi, F.; and Pous, D. 2015. Hacking Nondeterminism with In-
duction and Coinduction. CACM 58(2): 87––95.

Hopcroft, J. 1971. An n log n algorithm for minimizing states in
a finite automaton. Technical Report Technical Report STAN-CS-
71-190, Stanford University.

Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2006. Introduc-
tion to Automata Theory, Languages, and Computation. Pearson
Education, Inc., 3rd edition.

Jordan, C.; Klieber, W.; and Seidl, M. 2016. Non-CNF QBF Solv-
ing with QCIR. In AAAI Workshop: Beyond NP, AAAI Press.

Stockmeyer, L. J.; and Meyer, A. R. 1973. Word Problems Requir-
ing Exponential Time (Preliminary Report). In STOC ’73, 1–9.

Tabakov, D.; and Vardi, M. Y. 2005. Experimental Evaluation of
Classical Automata Constructions. In Sutcliffe, G.; and Voronkov,
A., eds., LPAR 2005, 396–411. Springer.

3https://github.com/gogforce/qcir14 to pcnf
4https://doi.org/10.5281/zenodo.4279874
5e.g., Bonchi and Pous track the number of processed pairs in

their experimental work

15850

