
Deep Reinforcement Learning for a Dictionary Based Compression Schema
(Student Abstract)

Keren Nivasch∗, Dana Shapira, Amos Azaria
Data Science Center, Ariel University, Ariel 40700, Israel

{kerenni, shapird, amos.azaria}@ariel.ac.il

Abstract

An increasingly important process of the internet age and
the massive data era is file compression. One popular com-
pression scheme, Lempel–Ziv–Welch (LZW), maintains a
dictionary of previously seen strings. The dictionary is up-
dated throughout the parsing process by adding new encoun-
tered substrings. Klein, Opalinsky and Shapira (2019) re-
cently studied the option of selectively updating the LZW
dictionary. They show that even inserting only a random sub-
set of the strings into the dictionary does not adversely affect
the compression ratio. Inspired by their approach, we pro-
pose a reinforcement learning based agent, RLZW, that de-
cides when to add a string to the dictionary. The agent is first
trained on a large set of data, and then tested on files it has
not seen previously (i.e., the test set). We show that on some
types of input data, RLZW outperforms the compression ratio
of a standard LZW.

Introduction
Reinforcement Learning (RL) (Sutton and Barto 2017) is a
machine learning paradigm, in which an agent employs trial
and error to come up with a solution to a problem, obtaining
rewards or penalties for the actions it performs. The goal of
the agent is to maximize the total reward. The agent starts
with random trials, and might finish with sophisticated tac-
tics and skills.

Deep RL based methods have recently gathered great suc-
cess in several domains, such as playing Atari games, the
game of Go, and self-driving cars. However, most domains
in which deep RL has been applied enjoy a fairly straightfor-
ward translation to the agent and RL domain. In this work,
we apply RL techniques to the field of data compression. We
propose to view both the encoder and the decoder as agents
which, in different compression schemes, may be able to
pick among several actions. In the context of data compres-
sion, we must use a deterministic agent so that both the en-
coder and the decoder take the exact same actions, and there-
fore are synchronized with the same world states. This is es-
sential as the decoder must reconstruct the original uncom-
pressed data. Therefore, in the test phase, either any element
of exploration must be completely removed, or any form of

∗Happamon 7, Kedumim, Israel. Phone: +972-58-5405402.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exploration must be deterministic, for example, being based
upon some shared seed.

Related Work
Lossless data compression methods can be partitioned into
two main encoding families, statistical methods, which in-
clude Huffman and arithmetic coding, and dictionary meth-
ods, in which LZ77 and LZ78 are the most famous ones.
Lempel–Ziv–Welch (LZW), a practical implementation of
LZ78, was developed by Welch (1984). LZW employs a dic-
tionary D of strings. D is traditionally initialized by the al-
phabet, e.g. the set of 256 ASCII characters. D is dynami-
cally updated as the input file is processed by extending ex-
isting strings in D by a single character, with new encoun-
tered strings that are seen in the input file for the first time.
Specifically, at each stage in the compression, substrings of
the input file are incrementally extended with the follow-
ing character until the resulting sequence does not appear
in D. The code for the sequence (without the new charac-
ter) is added to the output, and a new code (for the sequence
concatenated to the new character) is added to D. Thus, the
output is a sequence of pointers to the changing dictionary.
Each time the dictionary size reaches a power of 2, the num-
ber of bits used to represent the pointers increases by 1. Usu-
ally there is a bound on the dictionary size. When D reaches
this bound, no more strings are added to it and D remains
static. Alternatively, D may be restarted. Klein, Opalinsky,
and Shapira (2019) studied a variant of LZW in which new
strings are not always added to D. Rather, there exists a pa-
rameter k, and a new string is added to D only every kth
time. They found that this variant has the advantage of re-
ducing the processing time without adversely affecting the
compressing ratio. In this work, we develop RLZW, a vari-
ant of LZW, in which an RL component decides whether
to insert each new string into D or not. Our agent uses the
Q-Learning algorithm (Sutton and Barto 2017).

While, to the best of our knowledge, no previous work
has introduced RL to dictionary-based compression meth-
ods, several works applied deep learning to data compres-
sion. In most cases, these methods use deep learning strate-
gies to predict the upcoming characters or set of characters
(Shermer, Avigal, and Shapira 2010; Liu et al. 2018). Com-
bining RL and data compression has only been applied on
lossy compression (e.g. (Xu, Nandi, and Zhang 2003; Zhu,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15857

Lan, and van der Schaar 2013; Oladell and Huber 2012)).
We note that several works have used compression in order
to speed up deep learning (Ba and Caruana 2014; Amado
and Meneguzzi 2018).

RLZW: Applying RL to LZW
RLZW is a neural network Q-Learning compression algo-
rithm based on LZW. An RL agent must define states, ac-
tions and a reward function. RLZW follows the LZW algo-
rithm, except when encountering a string that does not ap-
pear in the dictionary. Each time RLZW encounters a new
string, w, RLZW is required to select between two actions:
inserting it into D or not. The reward function is set to the
difference, in bits, between the length of the uncompressed
string and the length of the corresponding pointer to the dic-
tionary: r = 8|w| − dlog2 |D|e, where |w| denotes the size
of w, and |D| denotes the number of words in the dictionary.

The state consists of the following three parameters: A
1-hot representation of the string w, a representation of D,
and the number of strings that may still be added to D. The
representation of D is composed of 0’s and 1’s indicating,
for each possible string, whether it exists in the dictionary.

The neural network is composed of the input layer (in-
cluding the encoding of the state), a hidden layer of size 30,
and two output neurons (one for each action).

Experimental Settings
Due to the large size of the representation of D, we used a
simplified model in which the files to be compressed contain
only 5 characters Σ = { , e, g, h, t}. Therefore, the initial-
ized size of D is 5. We limited the maximum size for D to
32 and the length of the strings in D to 4; hence the number
of possible strings in this model is 51 + 52 + 53 + 54 = 780
(which is the length of the representation of D).

Our dataset was composed of the ENGLISH text collec-
tion obtained from the Pizza&Chili corpus. We removed all
the characters except those in Σ and created 30 files of size
18KB each. To make the compression task more challeng-
ing, we added to each file a “header” of length 50 that also
contains only characters from Σ but with a different distri-
bution than the remainder of the file. Hence, during the pro-
cessing of the header, the regular LZW algorithm was ex-
pected to fill D with strings that do not appear much in the
remainder of the file. We hypothesised that RLZW will learn
to avoid these strings.

We used 24 files for training and the remaining 6 for test-
ing. The training was performed in 50 epochs, where in each
epoch a parameter ε determined the probability of exploring
(as opposed to exploiting). In the first 6 epochs ε was set
to 1, and then linearly decreased until, at the last epoch, it
reached 0.

Results
RLZW learned to insert into D several commonly used
strings (such as the, whereas LZW added less relevant
strings. Moreover, sometimes RLZW did not fillD to its full
capacity, showing that it learned that with a smaller dictio-
nary it needs fewer bits for encoding. In contrast, LZW filled
D quickly to its full capacity.

Algorithm Compression Ratio
LZW 0.389
RLZW (train) 0.288
RLZW (test) 0.309

Table 1: Comparison between LZW and RLZW

Overall, RLZW succeeded to compress the training files
26% better than LZW, and the test files 21% better than
LZW. See Table 1.

Conclusions and Future Work
In this paper we presented RLZW, an RL based agent that
decides whether to insert the current string to the LZW dic-
tionary or not. We showed that on some types of input data,
RLZW outperformed the compression ratio of LZW.

The next steps are to extend this method to a larger alpha-
bet and a larger dictionary size. We will consider additional
reinforcement learning methods, such as a deep Actor-Critic
learner. To the best of our knowledge, this work is the first
to use a reinforcement learning agent in a dictionary based
compression schema.

Acknowledgments
This work was supported by the Ministry of Science & Tech-
nology, Israel and by the Data Science and Artificial Intelli-
gence Center of Ariel University.

References
Amado, L.; and Meneguzzi, F. 2018. Q-Table compression
for reinforcement learning. Knowledge Eng. Review 33: e22.
Ba, J.; and Caruana, R. 2014. Do Deep Nets Really Need to
be Deep? In NIPS 2014, 2654–2662.
Klein, S. T.; Opalinsky, E.; and Shapira, D. 2019. Selective
Dynamic Compression. In Stringology 2019, 102–110.
Liu, H.; Chen, T.; Shen, Q.; Yue, T.; and Ma, Z. 2018. Deep
Image Compression via End-to-End Learning. In CVPR
2018, 2575–2578.
Oladell, M. C.; and Huber, M. 2012. Symbol Generation
and Grounding for Reinforcement Learning Agents Using
Affordances and Dictionary Compression. In FLAIRS 2012.
Shermer, E.; Avigal, M.; and Shapira, D. 2010. Neural
Markovian Predictive Compression: An Algorithm for On-
line Lossless Data Compression. In DCC 2010, 209–218.
Sutton, R. S.; and Barto, A. G. 2017. Reinforcement Learn-
ing: An Introduction. MIT Press, 2 edition.
Welch, T. 1984. A Technique for High-Performance Data
Compression. IEEE Computer 17(6): 8–19.
Xu, W.; Nandi, A. K.; and Zhang, J. 2003. A new fuzzy rein-
forcement learning vector quantization algorithm for image
compression. In ICASSP 2003, 269–272.
Zhu, X.; Lan, C.; and van der Schaar, M. 2013. Low-
complexity reinforcement learning for delay-sensitive com-
pression in networked video stream mining. In ICME 2013,
1–6.

15858

