
Solving JumpIN’ Using Zero-Dependency Reinforcement
Learning (Student Abstract)

Rachel Ostic,1 Oliver Benning,1 Patrick Boily2

1, 2University of Ottawa
2Data Action Lab, Ottawa

2Idlewyld Analytics and Consulting Services, Wakefield
{rosti049, obenn009, pboily}@uottawa.ca

Abstract

Reinforcement learning seeks to teach agents to solve prob-
lems using numerical rewards as feedback. This makes it
possible to incentivize actions that maximize returns despite
having no initial strategy or knowledge of their environment.
We implement a zero-external-dependency Q-learning algo-
rithm using Python to optimally solve the single-player game
JumpIn’ from SmartGames. We focus on interpretability of
the model using Q-table parsing, and transferability to other
games through a modular code structure. We observe rapid
performance gains using our backtracking update algorithm.

Introduction
Reinforcement learning (RL) is a machine learning tech-
nique that does not require complex models or close supervi-
sion, only numerical feedback. This makes it highly applica-
ble to solving puzzle games, where it is not computationally
feasible to model strategies using greedy look-ahead tech-
niques, and a winning strategy may not be known.

In an RL setting, an agent typically finds itself in a state
with a set of possible actions. The agent has contextual infor-
mation from its environment; this knowledge may be com-
plete or partial. Based on the agent’s actions and their subse-
quent outcome, it is given feedback, known as a “reward”, to
encourage or discourage similar behavior in the future. The
agent’s goal is to maximize its overall reward as it selects
actions, thereby growing more competent at its task.

We test an RL approach on JumpIN’, a single-player puz-
zle game.1 It is played on a 5 × 5 board with three piece
types: the bunny, the fox, and the mushroom. Mushrooms
are stationary during gameplay. Foxes can move forward and
back in their row if they are unimpeded. Bunnies can move
in all four directions, but only if they are jumping over other
pieces. The game ends when all the bunnies on the board
are in burrows, which can be found in the center and at each
corner of the board. The game manual includes 60 sample
puzzles ranging in level from very simple (∼ 5 moves to
win) to very challenging (∼ 100 moves to win). The appeal
of this game is that the rules are easily explainable, yet the

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1SmartGames. 2020 (accessed Sept. 16, 2020). JumpIN’.
https://www.smartgames.eu/uk/one-player-games/jumpin

puzzles themselves are not easy. We want to know if a Q-
learning-trained agent can yield a human-interpretable strat-
egy. Furthermore, it is easy to scale the game to larger board
sizes or increase the number of movable pieces, an interest-
ing avenue for analyzing how RL solutions scale on more
complex games.

Methods
While there exist frameworks in which to perform RL, not
all of these make models reusable from one session to an-
other or make it possible to examine them after training to
distill strategic insight. Taking a simple game with the poten-
tial for generalizations gives an ideal opportunity to test and
compare solution strategies. We leverage the object-oriented
nature of Python to create an independent, flexible and easy-
to-understand encoding of the JumpIN’ game.

Code Structure The modular code naturally separates
the main tasks of game play. We designed three modules:
game mechanics, solution, and training. The game mechan-
ics module handles game board initialization, and allows the
agent to query available actions. Once one has been selected,
the agent calls on this module again to perform the move.
Keeping this part independent means that if we wanted to
change rules, expand on the game, or even encode a differ-
ent game, it would be straightforward.

The solution module takes an initial board configuration
and grows a solution tree until a winning state is found. Pre-
viously encountered states are pruned to ensure that this al-
gorithm will terminate. To determine which nodes to add,
we use a library of sorters, i.e. possible strategies to help
the agent select actions. These allow us to test and com-
pare different strategies both with and without RL training
to gain a better understanding of what an optimal approach
to JumpIN’ looks like.

The training module facilitates the creation of template
models, importing and exporting of models from files in the
JSON format, and performing Q-learning training on them.
Repetitive calling of the solution module with the appropri-
ate sorters and callbacks is encapsulated into train and test
methods, making it simple to train on a selected puzzle, tune
the Q-learning parameters, or test a model’s performance.

Q-learning Implementation Q-learning views the prob-
lem as a sequence of states, actions, and rewards. At time t,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15861



the agent is in state St, chooses action at and receives re-
ward rt. As a result, it transitions to state St+1 and must
select a new action denoted at+1. The agent continues until
it reaches a JumpIN’ win state. In state St, the agent may
choose among multiple actions. To rank them, we define
Q-values q(S, a) for each state-action pair. At the start of
training, these are all uniformly initialized to zero. For each
action taken by the agent, we apply the Bellman equation:

qupdated(St, at) = q(St, at)

+ α

(
rt + γ max

a∈{at+1}
q(St+1, a)− q(St, at)

)
where α, the learning rate, and γ, the discount factor, are tun-
able parameters to quantify how much the agent takes into
account new information, and whether to seek immediate or
long-term rewards. Actions are selected with ε-greedy pol-
icy during training. We also include the option to set ε = 0
to “test” the model’s default solution path.

Our Q-learning approach prioritizes efficient solutions:
since the solution module can always find a solution, train-
ing should more highly recompense those requiring fewer
moves. We attribute a single reward upon winning; its value
is the reciprocal of the number of moves in the solution. We
also perform the Q-value updates in a backtracking man-
ner, following the states in the solution tree from win back
to start. The advantages of this technique are that the final
reward filters up through the encountered states after just
one training episode via the max q(St+1, a) term, and that
training can be implemented as a post-win callback without
modifying the solution module.

Results and Discussion
We verify that the test solutions converge to near-optimality
within as few as 20 training iterations. Parameters α, γ and ε
are varied to observe their effects on training. Figure 1 shows
that ε = 0.99 rapidly yields an efficient solution, but the
Q-table is exploited so rarely that random moves delay the
minimal path being strongly reinforced, leading to oscilla-
tions. With ε = 0.1 the solution length decreases slowly and
monotonically. We observe that changing α has little effect
on results, and setting γ = 0.99 leads to divergent behavior.

To generate a large sample Q-table, we trained on each of
the 60 sample puzzles 104 times, filling the table with 92,183
states and an average of 4.7 possible actions per state. Of
these actions, 55% still have a Q-value initialized to zero.
After training, the test solutions are all within 5 moves of
the minimum length. We analyzed for trends by comparing
move rankings from the Q-table to intuitive rankings based
on board state (e.g. average bunny distance to burrow) or
type of move (fox or bunny).

From this analysis, we determine that of those used in
the comparison, the strategy best matching the optimal solu-
tions is simply to do moves leading to the greatest possible
number of bunnies in burrows. This discrete strategy out-
performed the similar sorter based on average bunny dis-
tance to burrow. As for fox moves, we notice that they are
frequently on the lower end of Q-table rankings, leading us
to believe that foxes can stay put until they are needed for

Figure 1: Convergence of Q-table’s default solution for dif-
ferent values of exploration rate ε used in training. The min-
imum number of moves is 19.

Figure 2: Comparison showing how the fraction of states
where a fox move is ranked highest varies with the fox frac-
tion of movable pieces. Squares are averaged over the whole
Q-table; stars, over states in test solutions. “Exact match”
line is a guide to the eye, not a fit.

bunnies to leap-frog over. In addition, the fraction of foxes
out of movable pieces appears to be a good predictor of the
fraction of fox moves required in solutions as shown in fig-
ure 2.

Conclusion
We have successfully created a zero-dependency Q-learning
codebase that allows us to model a game and interface with
it through solution and training modules. After training, we
extract some intuitive strategies and verify convergence over
a range of parameters. To continue this work, we intend to
generalize JumpIN’ to larger dimensions with more pieces,
and compare this interpretable implementation with deep Q-
learning using a neural network to estimate Q-values. This
may make enable us to better take advantage of symmetries
on the game board.

References
Stephens, D. 2019. Applying Deep Reinforcement Learning to Fi-
nite State Single Player Games. CS229 projects, Fall 2019, Stan-
ford University.

Sutton, R. S.; and Barto, A. G. 2020. Reinforcement Learning: An
Introduction. MIT Press, 2nd edition.

15862


