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Abstract

The ability of an agent to distinguish the ramification ef-
fects of an action from its direct effects adds value to the
explainability of its decisions. In this work, we propose to en-
code the ramification effects of ontic and epistemic actions as
single-point update models in an epistemic planning domain
modeled with Kripkean semantics of Knowledge and Belief.
We call them “mental actions”. We discuss a preliminary ap-
proach to realize our idea, and we conclude by pointing out
some optimizations as our ongoing pursuit.

Introduction: Motivation & Related Work
The deductive and causal nature of declarative knowledge
representation approaches in knowledge-based systems fa-
cilitate these systems to explain their decisions. In planning
domains, a rich action theory enables an agent to answer
why it decided to act in a certain way. Interestingly, actions
often have indirect effects or ramifications, and reasoning
and planning with ramifications is a well-studied problem
in Knowledge Representation (Shanahan 1999; Thiébaux,
Hoffmann, and Nebel 2005). We find a variety of approaches
in the literature (Pinto 1999; Strass and Thielscher 2013;
Muise, Belle, and McIlraith 2014) that handle this problem
either by having the ramifications encoded as actions them-
selves, or by compiling them away as direct effects of ac-
tions.
Example. Consider a scenario wherein a burglar breaks into
a house. The domestic robot DBot knows that the house
owner is not around, and it has to act immediately. It hits
a fake siren installed in the garden, hearing which the bur-
glar runs away. We see many instances of inference making
in this example, owing to the direct as well as the ramifica-
tion effects of actions. The one which is of particular interest
to us is where DBot considers the possibility of the burglar
making an inference that the police are nearby if the burglar
hears the siren. It is this inference that led DBot to hit the
fake siren, and when asked by the neighbors, DBot should
be able to explain why it did so.

This example also features another crucial ingredient of
explainability: Theory of Mind1 reasoning. The possible
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1TOM reasoning is the ability to ascribe mental states, such

worlds semantics of Epistemic logic (Hintikka 1962), en-
coded as a Kripke model, provides an elegant mechanism
for expressing agents’ beliefs in terms of possible, impossi-
ble or imaginary worlds in a multi-agent setting.

This work is focused on handling ramifications in the pos-
sible worlds model which enables DBot to think in terms of
possibilities and explain its inferences, such as: “I know that
the police are not around...but I inferred that hearing the
alarm would create a false belief in the burglar that the po-
lice have arrived, and therefore, it may infer a threat to itself,
which will make it run away.”.

Our Approach
We build on our previous work, (Singh and Khemani 2020)
which solves epistemic planning problems based on an
agent’s subjective knowledge in the domains consisting of
only ontic (world-changing) and epistemic (belief-changing)
actions. We extend it by introducing mental (inferencing)
actions. The idea is close to the earlier works which de-
fine the relationship between primitive and derived fluents
using axioms (McDermott 2000). We start with the assump-
tion that the direct effects of an action can be described in
terms of primitive fluents, and the indirect effects, only in
terms of derived fluents. Relaxing this constraint is a work
in progress. Proceeding with this setup, we show ramifica-
tions as mental actions, and apply them in the states that
trigger them. To the best of our knowledge, we are the first
to encode ramifications as single-point update models in a
planner that uses the possible worlds model to represent an
agent’s subjective knowledge.

Mental Actions as Single-Point Update Models
A mental action, like an axiom, encodes the relationship be-
tween primitive and derived fluents, or among several de-
rived fluents. We first categorize the domain fluents F as:
primitive fluents and derived fluents. Then we apply strat-
ification (Thiébaux, Hoffmann, and Nebel 2005) on the
set of derived fluents, say FD. A stratification on FD in-
duces stratification on the set of mental actions: actionsM
too. Applying mental actions in the lower stratum, say

as beliefs, goals, and intentions to others (Premack and Woodruff
1978).
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Figure 1: Mental action to infer threat to the burglar

actionsnM , before applying mental actions in the next stra-
tum, actionsn+1

M , leads to the same fixed point, had the men-
tal actions in actionsM been applied infinitely in any order.

Mental actions (for instance, Am in Figure 1) are single-
point update models (written as (Am, e), for instance), with
no observability restrictions, and are executable in only
those worlds (such as world t in model M ) in which the pre-
conditions of the point (say, at burglar and at police) hold
true. The model is then transformed in such a way that in the
updated model (see world t′ in model M ′), the valuation of
inferred (derived) fluent(s) (such as, threat burglar) is set to
true. Note that M is the resulting model after DBot hits the
siren, leading to a false belief in the burglar that the police
have arrived. M ′ is the resulting model after the ramification
effect of hitting the siren is realized with the mental action
Am on M . We see that though DBot itself doesn’t infer that
there is a threat to the burglar, but it believes that the burglar
would infer so.

As a preliminary approach, we let the planner2 apply the
stratified mental actions after every ontic and epistemic up-
date (line no. 4-7, 15-18), as shown in Algorithm 1, and ad-
ditionally store the inferences made after each update (not
shown due to space constraints), which can be used for ex-
planation generation at a later stage.

Conclusion and Future Work
The proposed approach increases the number of updates
(or at least the applicability checks) in O(|actionM | ∗
|actions|d) where d is the depth of the search tree at a par-
ticular time. We can optimize on the applicability checks by
introducing the concept of relevance in the framework, such
that instead of the states triggering mental actions, the ontic
and epistemic actions trigger the relevant mental actions.
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2The planning framework and the notations used in Algorithm
1 are described in detail in our previous work (Singh and Khemani
2020).

Algorithm 1: KD45planner(PlanningProblemP =
〈(M0, Des), ..., actions, actionsM , self, goal〉)

1 Initialize a queue, open = (M0, Des)
2 while open is not empty do
3 (M, Des) = dequeue(open)
4 for i = 0; i < n; i = i+ 1 do
5 foreach am in actionsiM do
6 if am is applicable in (M, Des) then
7 (M, Des) = (M, Des) ⊗ am

8 if (M, Des) |= Goal then
9 SolutionPlan = TracePathToParent()

10 return SolutionPlan
11 else
12 for action ∈ actions do
13 if action is applicable in (M, Des) then
14 (M′, Des′) = (M, Des) ⊗ action
15 for i = 0; i < n; i = i+ 1 do
16 foreach am in actionsiM do
17 if am is applicable in

(M′, Des′) then
18 (M′, Des′) = (M′, Des′)

⊗ am

19 enqueue(open, (M′, Des′))

20 return false
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