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Abstract

Current state-of-the-art neural network explanation methods
(e.g. Saliency maps, DeepLIFT, LIME, etc.) focus more on
the direct relationship between NN outputs and inputs rather
than the NN structure and operations itself, hence there still
exists uncertainty over the exact role played by neurons. In
this paper, we propose a novel neural network structure with
Kolmogorov-Arnold Superposition Theorem based topology
and Gaussian Processes based flexible activation function to
achieve partial explainability of the neuron inner reasoning.
The model feasibility is verified in a case study on binary
classification of the banknotes.

Introduction
Motivation and Related Work With the increasing popu-
larity of artificial intelligence, there raise several explicit re-
quirements for XAI in different regions, such as EU GDPR
(see Recital 71) requires machine learning algorithms to be
able to explain their decisions. For neural networks (NN),
The most common way to achieving explainability is to eval-
uate the impact of each input on the output, e.g. Saliency
maps, DeepLIFT and LIME can obtain the approximate
solution to provide explanation by reverse analysis for in-
stances. However, these methods are more focusing on the
direct relation between inputs and output rather than the NN
structure and inner operations, hence there still exists un-
certainty over the exact role played by neurons. Authors of
(Alaa and van der Schaar 2019) propose to demystify black-
box models with symbolic meta-models which leads a path-
way to split and explicit the inner operations of NN and in-
spired us to improve transparency in NN from an activation
function (AF) and topology perspective.

Methodology In this paper, we propose to lay our explain-
ability scheme on a fixed topology mode and reveal the role
of each neuron by flexible AFs. Kolmogorov–Arnold Super-
position Theorem (KST) can offer an approximation to any
continuous function in high dimensional space using a finite
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composition of (a) univariate continuous functions and (b)
addition operation (Kolmogorov 1957). Therefore, based on
KST, we establish a scalable NN topology as the foundation
of our explainability to replace the conventional weight-bias
NN so that to embed all NN inner operations in the AFs. In
order to achieve the shape flexibility of the AF as required
in KST, we propose to model the AFs as noise-contained
Gaussian Processes (GP) by fitting the control points, whose
coordinates can be tuned by backpropagation in training pro-
cess so that to to control the posterior GP curve. In this case,
we can achieve the following objectives for the AFs: (a)
Ensure of the intrinsic autocorrelation within the function
for smoothness and explainability and gain both local and
global function adjustability owing to the nature of GP; (b)
Avoid over-fitting due to its tolerance of the noise (Williams
and Rasmussen 2006). At last, we analyze the AFs qualita-
tively to partially explain the model inner reasoning.

System Model
Neural Networks Topology
According to the Kolmogorov-Arnold Superposition Theo-
rem (KST) (Kolmogorov 1957), for any D ∈ N, there exist
R ≤ 2D and continuous functions φrd(λd) : I −→ R for
d = 1, 2, ..., D and r = 0, 1, ..., R, such that: for every ar-
bitrary multivariate continuous function f(λ) : ID −→ R,
where λ = [λ1, λ2, ..., λd, ..., λD]T there exist continuous
functions Φr : R −→ R for r = 0, 1, ..., R, such that we may
define:

F (λ) =
R∑

r=0

Φr

(
D∑

d=1

φrd(λd)

)
(1)

as an approximate realization of function f(λ); that is, given
any ε > 0, |F (λ) − f(λ)| < ε for each λ ∈ ID, which
means functions of the form F (λ) are dense inC(ID). Thus,
based on KST, we construct our NN topology (examples in
Fig.1(a)) and setR = 0, 1, 2, ... in (1), the repetition level, as
the only scaling parameter of topology, which can determine
the expressive power of the NN and thus is the key to the
tradeoff between model expressive power and explainabil-
ity (Fig.1(b)) while flexible activation function is applied.
Meanwhile, we define each repetition in topology as a unit,
which enable us to alleviate the complexity of explanation
into a fixed mode.
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Figure 1: (a) The proposed KST-based topology; (b) Tradeoff between explainability and model performance; (c) The well-
trained neurons in our case study. (d) Model explainability on noise attribute; (d) Model performance.

Activation Function
Initialization From the continuous AF domain, finite
number of control points are taken randomly as x =
[x1, x2, ..., xn]T, with y = φ(x) = [y1, y2, ..., yn]T while
each activation function is assumed to follow a latent GP
plus noise εwith these control points. Then, the initial poste-
rior GP mean function can be obtained after maximizing the
log marginal likelihood as (Williams and Rasmussen 2006):

φ(x∗) = kT(x, x∗)(k(x,x) + σ2In)−1y (2)
where σ2 is the variance of the additive zero-mean Gaussian
noise ε and k(xi, xj) is the kernel function which can quan-
tify the covariance between every two points. In our exper-
iments, rational quadratic (RQ) kernel is the default choice
due to its robustness.

Backpropagation With the symbolic expression of AFs,
the model loss can be represented by the coordinates of the
control points. Let L(Θ) denote the loss for a batch of in-
stances, where Θ = {xT,yT}. In each backpropagation
epoch, we can perform an update on control points’ coor-
dinate with a learning rate η as:[

xt+1
i

yt+1
i

]
←
[
xti
yti

]
− η

[
∂L(Θ)
∂xi

∂L(Θ)
∂yi

]
(3)

Case Study and Result Discussion
System Setup In this section, we perform a case study on
a four-attributes binary classification dataset for banknote
authentication 1 with attribute information: (λ1) variance of
wavelet transformed image; (λ2) skewness of wavelet trans-
formed image; (λ3) kurtosis of wavelet transformed image;
(λ4) entropy of image. Each attribute is standardized into
[−1, 1] interval for clearer illustrating. Furthermore, we add
an attribute with artificial noise (λ5), which uniformly dis-
tribute over [−1, 1], in order to evaluate the model’s ability
to deal with noise. The proposed NN is trained to give the
score of the banknotes’ image (”1” for genuine and ”0” for
forged). In our experiment, we set 6 control points in each
neuron and R = 1 while RQ kernel is used in the GP.

1Data Source: https://archive.ics.uci.edu/ml/datasets/banknote
+authentication

Results Discussion Fig.1(e) shows the classification accu-
racy achieve 100% for both training and test set after around
120 epochs, which is higher than the classical SVM (99.2%)
on this dataset. Fig.1(c) visualizes the well-trained AFs in
our NN model. At layer 2, the AF1 and AF2 give differ-
ent value ranges with ∆1 ≈ 0.8 > ∆2 ≈ 0.25 which
indicates that the unit 1 (R = 0) has a more decisive im-
pact than unit 2 (R = 1) on the model result. Besides, the
green points and the red crosses give two representative ex-
amples on how genuine and forged banknotes features are
operated in each neuron which gives an explanation for the
outputs with inner NN reasoning. Fig.1(d) demonstrates that
our model has the robustness to noise attribute λ5 – AF15
and AF25 give extremely little contribution to the model
result other than overfit the data. By analyzing the trained
model reversely, scientists can anticipate potential risks in
advance about how banknote would be forged to pass the
detector under this case. Meanwhile, for AI users, the one-
dimensional visual functions flow offer the transparency and
partial explainability on how model result come from each
attribute input, which can enhance the trust to the model.

Conclusion
In this paper, we propose a novel neural network structure
with Kolmogorov-Arnold Superposition Theorem based
topology and Gaussian Processes based flexible activation
function to achieve partial explainability of the neuron inner
reasoning. The model feasibility is verified in a case study
on binary classification of the banknotes.
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