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Abstract

Sampling of various types of acyclic orientations of chordal
graphs plays a central role in several AI applications. In this
work we investigate the use of the recently proposed gen-
eral partial rejection sampling technique of Guo, Jerrum, and
Liu, based on the Lovász Local Lemma, for sampling partial
acyclic orientations. For a given undirected graph, an acyclic
orientation is an assignment of directions to all of its edges
so that there is no directed cycle. In partial orientations some
edges are allowed to be undirected. We show how the tech-
nique can be used to sample partial acyclic orientations of
chordal graphs fast and with a clearly specified underlying
distribution. This is in contrast to other samplers of various
acyclic orientations with running times exponentially depen-
dent on the maximum degree of the graph.

Introduction
Sampling and counting of different types of acyclic orien-
tations of chordal graphs plays an important role in sev-
eral learning applications, perhaps most notably the struc-
ture learning of Bayesian networks that utilizes the so-called
v-structure-free acyclic orientations (Ganian, Hamm, and
Talvitie 2020; Ghassami et al. 2019; Talvitie and Koivisto
2019). An undirected graph is chordal if every cycle of
length four or more has a chord (a non-cycle edge connect-
ing two cycle vertices). A directed graph is v-structure-free
if it does not contain a triplet of vertices a, b, c with edges
a → c, b → c, and no edge between a and b. To the best of
our knowledge, the current state of the art uniform sampling
and counting algorithms take time that is exponential in the
maximum degree of the underlying chordal graph.

The problems of sampling and counting of acyclic orien-
tations also attracted attention in the theoretical community.
Counting of acyclic orientations is a special case of the Tutte
polynomial of a graph (Welsh 1995). Another special case is
the “chromatic polynomial,” which, surprisingly, yields the
number of acyclic orientations when evaluated at −1. While
the computation of this polynomial is NP-hard on general
graphs, it can be computed efficiently for any chordal graph
G, yielding an efficient counting algorithm for acyclic ori-
entations of G. For the so-called self-reducible problems the
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existence of an efficient counting algorithm implies an effi-
cient sampler. However, it is unclear if the problem of count-
ing all acyclic orientations is self-reducible, leading to the
following open problem: Is it possible to efficiently sample
acyclic orientations of chordal graphs uniformly at random?

In this work we investigate what types of acyclic orien-
tations that can be sampled efficiently using the recently
proposed general partial rejections sampling framework of
(Guo, Jerrum, and Liu 2019) based on the Lovász Local
Lemma. As a first step in this direction, we study partial
acyclic orientations, which are allowed to include directed
and undirected edges and contain no directed cycles (Conte
et al. 2016). We provide a polynomial time partial-rejection-
based sampler for these orientations for distributions that de-
pend on the number of directed edges. Since these orienta-
tions can be easily extended into complete acyclic orienta-
tions, we hope that this sampler might be used to construct
uniform samplers for acyclic orientations and possibly also
v-structure free acyclic orientations.

Sampling Partial Acyclic Orientations by
Partial Rejection Sampling

The partial rejection sampling framework consists of a set
of random variables X1, . . . , Xn, where each Xi is drawn
from its own distribution, and “bad” events A1, . . . , AN trig-
gered by specific variable assignments. In its basic form,
where simultaneously occurring bad events involve disjoint
variables, the partial rejection sampling “rejects” the assign-
ments of the variables in the bad events and re-samples them.
If the random variables are drawn from an identical uni-
form distribution, this process leads to the uniform distribu-
tion over assignments with no bad events. One can view the
interaction between the bad events through a “dependency
graph”: its N vertices correspond to the Ai’s, and Ai and Aj

are connected by an edge if they share one or more variables.
Under the extremal condition (two bad events are either in-
dependent or disjoint), we get a sample drawn according to
the product distribution of the individual random variables,
scaled to only assignments with no bad events, if we keep re-
sampling variables involved in bad events until no bad event
occurs. Moreover, this process converges very fast.

(Guo, Jerrum, and Liu 2019) extended the framework be-
yond the extremal condition, i.e., when two dependent bad
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Algorithm 1: Select the resampling set
1: LetR be the set of directed cycles of length three and

let N , the set of events that will not be resampled, be ∅.
Let ∂R denote the boundary ofR (neighbors ofR
outsideR) in the dependency graph.

2: While ∂R \N 6= ∅, go through each triangle
T ∈ ∂R \N ; if var(T ) ∩ var(R) = Xe and edge e is
directed, then add T intoR. Otherwise add T into N .

3: OutputR.

events can occur at the same time. In addition to resampling
the set X of the variables involved in the current bad events,
they also resample the variables for which some values trig-
ger a new bad event with the current assignment of the vari-
ables in X . The resulting distribution is still a product dis-
tribution conditioned on no occurring bad events, and the
expected running time is stated in the following theorem.
Theorem 0.1 (Guo-Jerrum-Liu). Let n be the number of
variables, N be the number of bad events, and ∆ be the max-
imum degree of the dependency graph. For any bad event,
let p be an upper bound on the probability that this bad
event occurs. Finally, let r be the maximum probability such
that for a pair of neighboring bad events A,B and an as-
signment of values to the variables in A, if the variables in
var(B)\var(A) are drawn, B occurs. Then, for any ∆ ≥ 2,
if 6ep∆2 ≤ 1 and 3er∆ ≤ 1, the expected number of re-
sampling rounds is O(logN) and thus the expected number
of variable resamples is O(n logN) with high probability.

Our Contribution
We define a random variable Xe for every edge e = (u, v)
of a given chordal graph G. This random variable will take
one of three possible values: direction from u to v, direction
from v to u, or staying undirected, chosen from distribu-
tion [q, q, 1 − 2q] for some q ∈ [0, 1] that will be specified
soon. We define bad events as directed cycles of length three,
since any directed cycles of larger sizes can be decomposed
because of chordality. We note that the partial acyclic orien-
tations do not fit the extremal condition since two directed
cycles of length three can share an edge. Applying the above
framework, we keep resampling variables in the output set
of Algorithm 1 until no bad event occurs, and the resulting
partial acyclic orientations of G is sampled with probability
proportional to qnumber of oriented edges.
Theorem 0.2. Let G = (V,E) be a chordal graph with
maximum degree d. If q ≤ 0.24d−

2
3 , the expected number of

variable resamples is O(|E| log |V |).

Proof. We will apply Theorem 0.1. The probability that a
specific bad event occurs is p = 2q3, since the cycle can
be oriented in two ways and it has three edges. Let A and
B be two neighboring events. This can happen only if they
share a single edge. Hence, for B to happen, the shared
edge already has to be directed and its other two edges need
to take the compatible direction. Thus, r = q2. We claim
that ∆ ≤ 3

2d. To see this, let A be a bad event with a

maximum degree in the dependency graph. Let Xe1 , Xe2 ,
and Xe3 be the variables involved in A and let ci be the
number of other bad events that involve Xei . These other
bad events correspond to different cycles of length three.
If e1 = (v1, v2), e2 = (v2, v3), and e3 = (v3, v1), then
v2’s degree is c1 + c2 + 2, where the +2 are for v1 and
v3. Since we have c1 + c2 + 2 ≤ d, c2 + c3 + 2 ≤ d,
c1 + c3 + 2 ≤ d, and c1 + c2 + c3 = ∆, we get that
2(c + 1 + c2 + c3) + 6 = 2∆ + 6 ≤ 3d, leading to
∆ ≤ 3

2d. Finally, from 6ep∆2 ≤ 1 and 3er∆ ≤ 1 we

get q ≤
(

3 3
√
ed

2
3

)−1
≤ 0.24d−

2
3 . Since the given chordal

graph has |E| edges and at most
(|V |

3

)
bad events, the ex-

pected number of variable resamples is O(|E| log |V |).

Experimental Work and Future Plans
Our work opens many directions for future research: Is it
possible to apply the partial rejection sampling framework
to directly sample (complete) acyclic orientations? Or v-
structure-free orientations? Does sampling of partial orien-
tations and extending them into complete ones yield the uni-
form distribution? As for our experimental work so far to-
wards (complete) acyclic orientations, instead of resampling
directed 3-cycles as indicated by the above analysis, we tried
orienting the edges randomly and resampling each edge in a
directed cycle. This results in resampling of each strongly
connected component, which we repeat until the graph is
acyclic. Our preliminary experiments indicate that the pro-
cess converges fast for chordal graphs. However, this pro-
cess, while inspired by the LLL framework, does not satisfy
all of the LLL conditions and, therefore, the existing theory
does not specify the underlying sampling distribution. We
plan to study this distribution in the future.
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