
Enhancing Context-Based Meta-Reinforcement Learning Algorithms via
An Efficient Task Encoder∗ (Student Abstract)

Feng Xu 1† , Shengyi Jiang 1† , Hao Yin 1, Zongzhang Zhang 1‡,
Yang Yu 1, Ming Li 1, Dong Li 2, Wulong Liu 2

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2 Noah’s Ark Lab, Huawei Company

{xufeng, jiangsy, yinh, zhangzz, yuy, lim}@lamda.nju.edu.cn, {lidong106, liuwulong}@huawei.com

Abstract

Meta-Reinforcement Learning (meta-RL) algorithms enable
agents to adapt to new tasks from small amounts of explo-
ration, based on the experience of similar tasks. Recent stud-
ies have pointed out that a good representation of a task is key
to the success of off-policy context-based meta-RL. Inspired
by contrastive methods in unsupervised representation learn-
ing, we propose a new method to learn the task representation
based on the mutual information between transition tuples in
a trajectory and the task embedding. We also propose a new
estimation for task similarity based on Q-function, which can
be used to form a constraint on the distribution of the encoded
task variables, making the task encoder encode the task vari-
ables more effective on new tasks. Experiments on meta-RL
tasks show that the newly proposed method outperforms ex-
isting meta-RL algorithms.

Introduction
Humans can adapt to new tasks from small amounts of ex-
ploration in the environment by leveraging their prior knowl-
edge. However, this step of learning raises a big challenge
for AI agents. Meta learning frameworks aim at tackling
this problem by capturing shared knowledge across differ-
ent tasks. In the reinforcement learning environment setting,
agents capture knowledge by interacting with the environ-
ment and learning different tasks. One state-of-the-art meta-
RL method is PEARL (Rakelly et al. 2019), which is an
off-policy context-based meta-RL algorithm. PEARL uses
a task variable learned from the context to guide the policy.
The key to context meta-RL algorithms is how to learn an
efficient task variable for the policy to utilize it. In this pa-
per, we try to enhance the previous works on context-based
meta-RL algorithms by focusing on the task encoder.
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Methods
Contrastive Method Inspired by the unsupervised mutual
information estimation method mentioned in Deep InfoMax
(DIM) (Hjelm et al. 2019), we maximize the mutual infor-
mation (MI) between the tuples sampled from the replay
buffer and the encoded task variable. Let x = {s, a, r} be
a tuple sampled from the replay buffer, and z be the encoded
task variable. Let Eφ be a neural network with parameters
φ, which takes input x and produces the parameters of the
posterior Gaussian distribution of z. Following the formula-
tion in (Nowozin, Cseke, and Tomioka 2016), we use an MI
estimator based on Jensen-Shannon Divergence (JSD):
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where x′ is sampled from the replay buffer of another task
and sp(a) = log(1 + ea) is the softplus function. We would
like to optimize Eφ by estimating and maximizing the mu-
tual information between x and z. Thus, the optimal param-
eters for the task encoder Eφ and the discriminator Tω are
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ω

(
X;Eφ(X)

)
+ arg minφDKL(Z||N),

where Z is the distribution of the encoded variables, and N
is the prior Gaussian distribution.

Similarity Estimation Observing the high variance in the
reward curves, we analyze how the task encoder maps the
task variable from the source distribution to the target dis-
tribution. After projecting the 5-dimensional variable to a 2-
dimensional plane with PCA, we find that the ordered source
distribution becomes relatively unordered, as shown in Fig.
1(b). To address this issue, we propose an estimator of task
similarity to assist the encoder. We use the Wasserstein dis-
tance and a new estimator inferred by the Q-function to com-
pute the similarity between the encoded task variables. The
formula for the 2-Wasserstein distance between two Gaus-
sian distributions N (µ1,Σ1) and N (µ2,Σ2) is
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Figure 1: The behavior of the context encoders. (a) shows
the source distribution. (b∼d) show the behavior of PEARL,
PEARL with Deep InfoMax (PEARL-DIM) and PEARL
with Similarity Estimation (PEARL-SIM), respectively.

where ||M ||F =
√∑m

i=1

∑n
j=1 |mij |2. We normalize the

Wasserstein distances by the maximum Wasserstein distance
in the prior distribution, denoted dmax. The similarity esti-
mation given by the Wasserstein distance estimator is
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The second estimator is inferred from the Q-function.
Since Q-function gives how good the action is in the state,
completing the current task. Intuitively, in the same state,
under different tasks, the difference in the Q(s, a, z) should
reflect the similarity between tasks. Based on this intuition,
we propose a task similarity estimator calculated from the
Q-value difference. First, we normalize the Q-values as

Q̄(s, a, z) = [Q(s, a, z)− µQ]/σQ,

where µQ and σQ are the mean and standard deviation of
the Q-values in the current epoch. The difference between
the encoded task variables can be calculated as

Qdiff(s, a, z, z̃) = ||Q̄(s, a, z)− Q̄(s, a, z̃)||1.

The similarity between the encoded task variables is

SQ(z, z̃) = 1− Es,aQdiff(s, a, z, z̃)

2
,

where Z is the distribution of the encoded task variable z.
Finally, we use the L2-norm distance as the loss:

Lsimilarity(Z) = Ez,z̃∼Z
(
SQ(z, z̃)− SW (z, z̃)

)2
.

Thus, the optimal parameters for the encoder is

ω̂ = arg minω
(
DKL(Z|N) + Lsimilarity(Z)

)
.

Metric Goal PEARL PEARL-DIM PEARL-SIM
EVD 404 301 294 361
EVS 3321 3272 3281 3286

Table 1: Results on quantified metrics

Experiments
In this section, we compare the performance of PEARL with
our enhanced context encoder methods, including the con-
trastive method and the task similarity estimation method,
on a physics-based control task named ant-goal in the
MuJoCo physics engine. The dimension of the encoded
task variable is 5. For each method, we visualize the 5-
dimensional encoded task variables by projecting them to
a 2-dimensional plane with PCA, so that the distances be-
tween the projected variables reflect their original spatial
features.

The behavior of our methods is presented in Fig. 1. From
it, we can see that the posterior distribution generated by
PEARL-SIM discriminates different tasks effectively, and
matches better to the source distribution.

To quantify the results, we define two metrics to cap-
ture the spatial features of the distribution. The first metric,
which calculates the dispersion degree, is

EVD = Ez1,z2(DE(z1, z2)),

where DE is the Euclidean distance. To describe the dis-
tribution similarity EVS , we divide EVD by the standard
deviation σZ of the variables, which is

EVS =
EVD
σZ

.

The result is shown in Table 1. From it, we can see that the
closer the value is to the goal distribution, the more similar
they are.

Conclusion
In this paper, we propose two methods to enhance the per-
formance of the context-based meta-RL algorithm PEARL.
We use contrastive methods to discriminate different tasks
and propose a new estimator for the task similarity, so that
the task encoder could discriminate different tasks and learn
the similarity between tasks better.
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