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Abstract

Contextual multi-armed bandit (MAB) is a classic online
learning problem, where a learner/agent selects actions (i.e.,
arms) given contextual information and discovers optimal ac-
tions based on reward feedback. Applications of contextual
bandit have been increasingly expanding, including adver-
tisement, personalization, resource allocation in wireless net-
works, among others. Nonetheless, the reward feedback is de-
layed in many applications (e.g., a user may only provide ser-
vice ratings after a period of time), creating challenges for
contextual bandits. In this paper, we address delayed feed-
back in contextual bandits by using semi-supervised learn-
ing — incorporate estimates of delayed rewards to improve
the estimation of future rewards. Concretely, the reward feed-
back for an arm selected at the beginning of a round is only
observed by the agent/learner with some observation noise
and provided to the agent after some a priori unknown but
bounded delays. Motivated by semi-supervised learning that
produces pseudo labels for unlabeled data to further improve
the model performance, we generate fictitious estimates of
rewards that are delayed and have yet to arrive based on
already-learnt reward functions. Thus, by combining semi-
supervised learning with online contextual bandit learning,
we propose a novel extension and design two algorithms,
which estimate the values for currently unavailable reward
feedbacks to minimize the maximum estimation error and av-
erage estimation error, respectively.

Problem Formulation
Given context information at each round t = 1, 2, · · · , T ,
the agent/learner needs to select an arm. We denote xa,t ∈
RM as the context, which is a representation of the envi-
ronment information or feature regrading arm a at the t-th
round, for a ∈ A = {1, 2, · · · ,K} and t = 1, 2, · · · , T . For
a selected arm a at round t, we denote the resulting reward
as ya,t ∈ R. Nonetheless, due to feedback delays, the agent
can only receive the reward feedback at the beginning of the
(t + dt)-th round, where dt ≥ 1 is the delay for the arm
selected at round t. Note that it is possible that the learner
simultaneously receives multiple feedback signals for arms
selected in prior rounds. Assume that at round t, the agent re-
ceives a set of reward feedbacks for arms selected at rounds
belonging to the set St, i.e. ∀τ ∈ St, τ + dτ = t.
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We use the kernel method to model non-linear reward
functions in terms of the context and arm. Given a kernel
function k(x, x′) = φ(x)>φ(x′), ∀x, x′ ∈ RM , we can ex-
press the expected reward function as g(xa,t) = φ(xa,t)

>θ
in a reproducing kernel Hilbert space (RKHS) H corre-
sponding to the kernel function k(x, x′). Specifically, the ac-
tual reward feedback ya,t received by the agent (after a delay
of dt rounds) for its arm a selected at round t is written as

ya,t = g(xa,t) + εt = φ(xa,t)
>θ + εt,

where εt ∼ N (0, σε) is the reward observation noise. The
goal of the agent is to maximize its total expected reward, or
equivalently minimize its cumulative regret, over T rounds.
We define the best arm given context xa,t at round t as the
arm that leads to the highest expected reward, i.e.,

a∗t = arg max
a∈A

E [ya,t] = arg max
a∈A

g(xa,t).

Thus, the agent needs to find an arm selection pol-
icy based on the received feedback signals and context-
arm history to minimize the cumulative regret RT =∑T
t=1 E

[
ya∗t ,t − yat,t

]
, where the expectation is taken over

the observation noises.

Bandit with Semi-supervised Learning
In bandits with immediate reward feedback, the reward pa-
rameter θ can be estimated based on all the reward-context
pairs in the history rounds. However, in the considered ban-
dits with delayed feedback, since the rewards of some his-
tory rounds are not fed back, only unsupervised data (con-
text) of these rounds is available, which can increase the re-
ward estimation error and cause a large regret. Despite this,
semi-supervised learning which exploits the unsupervised
data can be used to improve the reward estimation (Zhu and
Goldberg 2009). In this section, we will consider two ways
of semi-supervised learning to obtain better reward estima-
tions, which are described in Algorithm 1.

Minimizing the Maximum Estimation Error
Based on the reward function learnt so far, the agent can es-
timate the upper and lower bounds of average rewards for
those delayed feedbacks while waiting for them to arrive.
Thus, we can view the upper and lower bounds as the per-
turbation range of the delayed rewards, and provide a robust
learning algorithm.
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Algorithm 1 Contextual UCB with Semi-supervised Learning

1: Inputs : kernel function k and parameter α and λ.
2: for t = 1, · · · , T do
3: if length(ŷt) = 0 then
4: Randomly choose arm at
5: else
6: if |St| 6= 0 then
7: ∀τ ∈ St, augment yaτ ,τ into ŷt, and append

φ(xa,τ ) into Φ̂t and remove it from Φ̃t.
8: Receive context xa,t, a = 1, · · · ,K
9: for a ∈ A do

10: MinMax: Calculate g̃ca,t and w̃a,t
11: Or MinAvg: Calculate ḡa,t and w̄a,t
12: MinMax: at = arg maxa∈A g̃

c
a,t + (α+ λ)w̃a,t

13: Or MinAvg: at = arg maxa∈A ḡa,t+(α+λ)w̄a,t
14: Augment φ(xa,t) into Φt and Φ̃t

First, we use Φ̃t to store contexts without feedback yet
and Φ̂t to store contexts whose reward feedbacks have ar-
rived and the corresponding rewards are ŷt. Thus, we can
use Φt to represent all the experienced contexts up to the
beginning of round t, such that Φ>t = [Φ̃>t , Φ̂

>
t ]. Once a

delayed reward feedback is provided, it will be appended to
ŷt and its corresponding context information will be trans-
ferred from Φ̃t to Φ̂t. Based on the feedback rewards, we
can get a primary estimation of reward parameter by kernel
ridge regression (Deshmukh, Dogan, and Scott 2017) as

θ̂t = Ĉ−1
t Φ̂tŷt, (1)

where Ĉ−1
t = Φ̂tΣt

−1Φ̂>t +λI and λ is a hyper-parameter.
Then based on the primary parameter estimation (1), we

can get an ambiguous range of each delayed reward feed-
back that have not arrived. Specifically, denote the reward
feedbacks that have not arrived before round t are contained
in ỹt. By using the estimation error bound of kernel ridge
regression (1), with probability at least 1− δ, δ ∈ (0, 1), the
k-th element ỹkt in the vector ỹt corresponding to context xka
can be bounded by the confidence width as follows:∣∣∣ỹkt − φ(xka)>θ̂t

∣∣∣ ≤ (α+ λ)

√
φ(xka)>Ĉ−1

t φ(xka) (2)

where α =
√

1
2 ln 2KT

δ .
Next we can estimate the reward function in a robust man-

ner given the ambiguous range shown in Eqn. (2). Specifi-
cally, the robust estimation of θ̃t is obtained by solving the
MinMax optimization problem:

min
θ̃

{
max
ỹt

‖ỹt − (Φ̃t)
>θ̃‖2+ ‖ŷt−(Φ̂t)

>θ̃‖2+λ‖θ̃‖2
}

Finding a closed-form solution θ̃t can be intractable due to
the maximization operator. we can use a sampling approach
to solve the problem approximately. First, we generate ran-
dom samples within the ambiguous range in Eqn. (2). We
use Yt to store all the generated samples for those delayed

rewards that have not yet been received. Then, for each sam-
ple yit ∈ Yt, we can solve the kernel-based ridge regression
as

θ̃it= arg min
θ̃

{
‖yit−(Φ̃t)

>θ̃‖2+‖ŷt−(Φ̂t)
>θ̃‖2+λ‖θ̃‖2

}
.

Based on (Deshmukh, Dogan, and Scott 2017), we obtain θ̃it
and the estimated reward

gia,t = φ(xa,t)
>θ̃it = φ(xa,t)

>C̃−1
t Φtỹ

i
t (3)

, where ỹit = [yit, ŷt] and C̃t = ΦtΦt
>+λI. In total, we can

have |Yt| candidate reward estimates. Here, we choose the
worst-case candidate g̃ca,t which has the largest estimation
error as the estimated reward, i.e.

c=arg max
i=1,··· ,|Yt|

(‖yit−(Φ̃t)
>θ̃it‖2+‖ŷt − (Φ̂t)

>θ̃it‖2+λ‖θ̃it‖2).

(4)

Like other UCB algorithms, we also add an exploration

term of confidence width w̃a,t =
√
φ(xa,t)>C̃−1

t φ(xa,t)

into the estimated reward.

Minimizing the Average Estimation Error
The second robust method is to minimize the average reward
estimation error to estimate reward functions. Also, we first
generate random samples yit in Yt, based on the ambiguous
range in Eqn. (2), as pseudo-feedback for contexts in Φ̂t.
Instead of solving the MinMax optimization, we calculate
θ̄t by minimizing the average reward estimation error of all
samples in Yt by kernel-based ridge regression:

θ̄t=arg min
θ̄

{
1

|Yt|
∑
i

‖yit−(Φ̃t)
>θ̄‖2+‖ŷt−(Φ̂t)

>θ̄‖2+λ‖θ̄‖2
}

Therefore, we can get the expected reward candidate as

ḡa,t = φ(xa,t)
>θ̄t = φ(xa,t)

>C̄−1
t Φ̄tȳt, (5)

where ȳt = [ 1√
|Yt|

y1
t
>
, . . . , 1√

|Yt|
y
|Yt|
t

>
, ŷ>t ]>, Φ̄t is

created by concatenation of 1√
|Yt|

Φ̃t itself |Yt| times with

one Φ̂t, and C̄t = Φ̄tΦ̄
>
t + λI.

We still use UCB-based arm selection where the explo-

ration term is expressed as w̄a,t =
√
φ(xa,t)>C̄−1

t φ(xa,t).

We will perform regret analysis and evaluations in our
future work.
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