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Abstract

Neural architecture search (NAS) has emerged as an al-
gorithmic method of developing neural network architec-
tures. Weight Agnostic Neural Networks (WANNs) are an
evolutionary-based NAS approach. Fundamentally, WANNs
find network structures that are relatively insensitive to shifts
in weight values and are typically much smaller than an
equivalent performance dense network. Here, we extend the
WANN framework to search for spiking circuits and in do-
ing so investigate whether these circuit motifs can also yield
task performance that is weight agnostic. We analyze prop-
erties such as the complexity of the solution, as well as per-
formance. Our results successfully show the performance of
spiking WANNs on several exemplar tasks.

Introduction
Neural networks are becoming exceedingly commonplace,
with applications in various domains; however, limitations
of traditional hardware which neural networks run on are
becoming apparent, specifically in the low-power domain.
For edge computing applications, such as drones and satel-
lites, running large neural networks are not feasible due to
the energy cost.

Neuromorphic, or brain-inspired, computing introduces a
new paradigm that offers low energy usage. This non-Von
Neumann architecture relies on event-based spiking com-
munication between neurons. Conversely, a typical artificial
neural network (ANN) relies on dense communication of
continuous values. In order for ANNs to work under this
new paradigm, they must be converted into a spiking neu-
ral network (SNN). An SNN mimics biological neural net-
works by incorporating time into the neuron model by us-
ing discrete spikes to transfer information between neurons.
The primary motivation for this difference is the promise of
energy-efficient compute evidenced by biological systems.

In terms of an ANN, we can define a spiking neuron com-
putation by a threshold (step/binary) activation function. Al-
though an ANN with threshold activation functions is not
strictly an SNN due to the lack of a temporal domain, they
are compatible with spiking neuromorphic hardware, there-
fore it is referred to as spiking. Whetstone (Severa et al.
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Figure 1: Sparse network topologies of the top individuals
for the swingup cartpole task (left) and the bipedal walker
task (right). (+) represents the linear activation functions and
(0/1) is the threshold activation function.

2019), an algorithm that iteratively sharpens activation func-
tions in deep neural networks to become binary, shows that
converting ANNs to SNNs is a non-trivial process. We show
that evolving weight agnostic neural networks with thresh-
old and linear activation functions perform well and are be
suitable to be transferred onto neuromorphic hardware.

Weight Agnostic Neural Networks
Weight Agnostic Neural Networks (WANNs) (Gaier and Ha
2019) are inspired by the fact precocial species can carry
out several tasks at birth, without any training. WANNs fol-
low an iterative topology search algorithm inspired by the
NEAT evolutionary search method (Stanley and Miikku-
lainen 2002). Using multi-objective optimization, the size
of the network is minimized and the performance is maxi-
mized by adding and removing connections to various nodes
that are sampled from a large set of activation functions. This
process generates a population of sparse network topologies.

Most architecture search methods involve individual
weight training for each generated topology, causing the
searching process to be computationally expensive. WANNs
enforce weight sharing across the entire network, so rather
than training a network several times, WANNs evaluate their
performance on a set of shared weight values between -2 and
2. The optimal network topology through this search method
then has its weights individually trained. Gaier and Ha spec-
ulated the variety of activation functions was important to
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WANN Tuned Shared Weight Tuned Weights Connections in Network
Swingup Cartpole 723 ± 16 932 ± 6 62
Bipedal Walker 261 ± 58 322 ± 7 338
MNIST 91.9% 94.2% 1228
Spiking WANN Tuned Shared Weight Tuned Weights Connections in Network
Swingup Cartpole 745 ± 11 912 ± 5 56
Bipedal Walker 290 ± 22 281 ± 31 210
MNIST 87.7% 88.2% 576

Table 1: Results for the various tasks for the WANN (top) and Spiking WANN (bottom). The first two results show average
reward over 100 rollouts with standard deviations. For MNIST, accuracy on the test set is reported.

their result. We show that threshold and linear activations
are sufficient.

Contribution
To generate networks compatible with neuromorphic hard-
ware, the set of activation functions are restricted to thresh-
old and linear. Threshold activation functions themselves
can easily be transferred onto neuromorphic hardware; how-
ever, when combined with a linear activation function, they
mimic additive dendritic trees and can be approximated by
leaky integrate-and-fire neurons with delays.

After devising this approach with the help of my mentors,
I evaluated it on three tasks: the cartpole swingup task, the
bipedal walker task, and MNIST digit classification. These
tasks are the same as the WANN paper and are evolved us-
ing the same parameters to ensure fair comparisons are made
between them. WANNs perform slowly on high dimensional
tasks due to mutating through a large number of connections
from the input layer, thus the dimensions of MNIST were
reduced from 28x28 to 16x16. Evaluation of these tasks are
highly parallelizable, so I implemented asynchronous evalu-
ation across hundreds of processes to speed up training.

Results can be seen in Table 1. The tuned shared weight
category is the best shared weight value within the range for
the evolved network topology. The tuned weights is when
the network’s weights are individually trained using evolu-
tionary strategies. Interestingly, the tuned shared weights for
the spiking WANNs have generally higher performance than
the WANN, but the finetuned weights perform worse. Ex-
perimentation has shown this can be attributed to a fewer
number of weights to finetune, as we see spiking WANNs
consistently generate smaller networks, seen in Figure 1.

We note, however, that in the control tasks the agent inter-
acts with the environment and may be able to adjust behav-
ior during an episode. In contrast, classification is a one-shot
determination. Table 1 shows the performance to be worse
across the board for the classification task; however, this is
related to the significantly smaller sized network generated
by the spiking WANN. Changes to the multi-objective op-
timization problem may mitigate this and help find a more
optimal network topology.

Future Work
We hope to map these, or similar networks, to neuromor-
phic hardware. Some inputs and outputs may not be fully

spiking, such as the softmax operation used for classifica-
tion tasks. Developments in these methods will aid in even-
tual neuromorphic deployment. In addition, the size of the
network was minimized as a rough approximation of en-
ergy usage and complexity, but architectures could perform
differently depending on the type of network topology. Ex-
ploring energy-based constraints by changing this metric
depending on the target platform would allow for neural
network-hardware co-design. For example, certain neuro-
morphic platforms restrict the number of connections but
have a large number of neurons, and vice versa.

Whetstone refines the activation functions of a typical
deep neural network to become threshold activation func-
tions, which can then be used on neuromorphic hardware.
Leveraging the representational capabilities of a Whetstone
network with a spiking WANN may increase performance
on tasks with large input sizes, such as Atari game playing.

Lastly, I have been evaluating the robustness of spiking
WANNs to noise. Since the evolved network topology is
weight agnostic, there is potential for noise resilience in the
input space or in the synaptic weights. Future exploration of
this domain would make it an ideal candidate for generating
networks on hardware where the weights are noisy or low
precision.
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