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Abstract
My research presents a method for efficient exploration of an
outdoor, unknown area, which aims to achieve precise cover-
age of regions of interest within that area. While this method
for autonomous exploration was designed for autonomous
controllers in unmanned aerial vehicles (UAVs), the concepts
apply to any vehicle which uses autonomous navigation. We
consider an environment with areas of interest of various sizes
littered throughout, and a reinforcement learning agent which
is tasked with discovering and mapping these areas in an ef-
ficient manner.

Introduction
Exploration of an unknown area is an important task in
many applications of mobile robotics. Autonomous robots
are employed in environmental mapping, detection of an
area of interest, search and rescue missions, and other op-
erations that involve navigating a previously unknown envi-
ronment. Since these problems require constructing a map
of a new environment while keeping track of the agent’s lo-
cation within it, they can be defined as Simultaneous Lo-
calization and Mapping (SLAM). Unmanned Aerial Vehi-
cles (UAVs) are particularly effective in these tasks because
recent advances in onboard computing power allow for in-
creased maneuverability over ground robots. For these tasks,
an accurate mathematical model of the environment is often
unavailable, because the area of exploration is unknown in
some capacity. Reinforcement learning (RL) in UAVs offers
a solution to this problem because the RL agent does not
need an explicit model of the environment to navigate within
it; instead it learns the model by trial and error.

Many existing RL solutions with UAVs assume a target
destination for the agent to reach, but many practical appli-
cations do not involve this form of explicit target. To our
knowledge, no other work focuses on actually discovering
and exploring areas of interest in a completely new area
without predetermined targets. Building on the RL algo-
rithms DDQN (Hausknecht and Stone 2015) , and A2C (Sut-
ton and Barto 2018), we propose a model which can success-
fully navigate an infinitely large unknown area while seek-
ing and following areas of interest with limited resources
(i.e. time and battery life).
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Research Methodology
For state of the art RL models, effective navigation of a large
area is intractable because of the lack of a strong enough
feedback signal. To combat this, we divide the map into
many smaller regions. The first division is into nine equal
regions, and then another division occurs which limits the
agent to a 25x25 area, called the local map (Maciel-Pearson
et al. 2019). The agent’s vision size is a 5x5 area, with it
in the center. By dividing the area the drone has to explore,
we can also give it intermediary tasks to perform to make
the problem solvable through RL algorithms. The first task
is Target Selection. We use an optimization equation to pick
the centroid of one of the nine regions as a temporary target
for the agent to navigate towards, using information, gath-
ered from previous time steps throughout the episode. This
function considers the distance to that region, the percentage
of that region that has been covered previously, and the per-
centage of the region that contained an area of interest, to as
much precision as possible using the gathered information.
With these metrics, the algorithm can select a promising, but
relatively unknown region to explore.

Once a region is chosen, the agent transitions to another
task called Target Search. The cell in the middle of each re-
gion is designated as the region target, and the goal of the
target search task is to reach that target. Once again we run
into the issue of a very large state space when trying to po-
tentially navigate across multiple regions to the chosen tar-
get. To resolve this issue, we limit the agent’s movement to
the local map within its current assigned region, and desig-
nate a cell, closest in distance to the region target, as the local
target. Hence, each search task consists of multiple smaller
search tasks, where the agent reaches the local target and a
new local map is formed around it. In addition, the agent is
rewarded for covering any areas of interest along the way,
so it learns to deviate slightly from the quickest path to the
target when beneficial. We use the DDQN algorithm with an
LSTM layer to implement this task

After reaching the region target, the agent transitions to
Region Exploration. In this task, the agent is permitted to
explore the entire region, and is rewarded for visiting un-
known cells and covering areas of interest in minimal steps.
The A2C algorithm is used to implement the Region Explo-
ration.

Each testing episode for the RL agent consists of the cy-
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Model 30% 50% 70%

Our Model 3,874 7,959 18,674
Curiosity 39,756 39,756 39,756
Zigzag 9,529 15,964 21,786
Random 14,640 33,817 40,245

Table 1: Average number of steps over 500 episodes to reach
30%, 50%, and 70% AoI coverage.

cle: select a target, navigate to that target, and explore the re-
gion surrounding that target. We let this repeat until the agent
manages to cover 70% of the areas of interest, or 40, 000
steps, whichever comes first.

Results
Fig.1(b) shows an example path our RL agent took over the
course of an episode to reach 70% area of interest coverage
in the simulated map (Fig.1(a)). Fig.1(c) shows an agent per-
forming the curiosity exploration as in (Burda et al. 2018).
Fig.1(d) shows the path taken by a baseline of a hardcoded
policy, which aims to simply cover as much ground as pos-
sible without overlapping, by sweeping from side to side.
Fig.1(e) shows the path of the final baseline, an agent which
uses the same proposed sub-tasks, but picks actions ran-
domly instead of according to an RL policy.

Table 1 shows the average amount of steps each algorithm
took to reach coverage thresholds of 30%, 50%, and 70%.
Our proposed model manages to reach each of these thresh-
olds faster than the three baselines. The curiosity exploration
(Burda et al. 2018) mimics an RL agent without the archi-
tecture mentioned in the methodology section, which failed
to reach any of the coverage thresholds in the allotted 40,000
steps. This shows our partitioning of the problem into sub-
tasks is necessary for the RL algorithms to succeed. The
sweeping policy as seen in Fig.1(d) performed closest to our
model, but still took more steps because the learned policy
in our model enables the UAV to efficiently search the entire
map, rather than simply prioritizing covering every location.
The random approach’s inability to find AoI quickly shows
that the RL algorithms are still necessary to take advantage
of the problem decomposition. Ultimately, our model per-
forms better than each baseline because it is trained to opti-
mize information gain with each step, which is effective for
missions in large, unknown environments.

Discussion and Future Work
As seen in the results, our agent explores large, unknown
areas in less steps than the baselines. To extend our work
to larger areas, we can simply partition into more, equally-
sized regions. In the future, we will look extend the algo-
rithm to a multi-agent environment, to further increase the
area that can be explored.

We plan to work with the Peruvian National Park Service
to deploy our algorithm onboard drones in the Amazon, to
search for hotspots of illegal gold mining. Our agent supplies
a method for efficiently exploring large regions which have

Figure 1: The original simulation map, with AoIs in red
(a). Samples from the generated paths for the agent using
the proposed approach (b), the curiosity exploration (Burda
et al. 2018) (c), the hard coded sweeping policy (d), and the
random policy (e).

not been imaged closely, and identify the locations of mining
which damage the ecosystem. In addition, our algorithm can
be applied to search and rescue (SaR) scenarios, as we have
shown in our recent publication (McCalmon et al. 2020).
The number of areas of interests can be altered to represent
SaR targets, and the agent seeks them out quickly.

References
Burda, Y.; Edwards, H.; Pathak, D.; Storkey, A. J.; Darrell,
T.; and Efros, A. A. 2018. Large-Scale Study of Curiosity-
Driven Learning. CoRR abs/1808.04355. URL http://arxiv.
org/abs/1808.04355.
Hausknecht, M. J.; and Stone, P. 2015. Deep Recur-
rent Q-Learning for Partially Observable MDPs. CoRR
abs/1507.06527. URL http://arxiv.org/abs/1507.06527.
Maciel-Pearson, B. G.; Marchegiani, L.; Akcay, S.;
Abarghouei, A. A.; Garforth, J.; and Breckon, T. P. 2019.
Online Deep Reinforcement Learning for Autonomous
UAV Navigation and Exploration of Outdoor Environ-
ments. CoRR abs/1912.05684. URL http://arxiv.org/abs/
1912.05684.
McCalmon, J.; Peake, A.; Zhang, Y.; Raiford, B.; and Alqah-
tani, S. 2020. Wilderness Search and Rescue Missions using
Deep Reinforcement Learning. SSRR .
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition. URL
http://incompleteideas.net/book/the-book-2nd.html.

15971


