
A Semantic Parsing and Reasoning-Based Approach to Knowledge Base Question
Answering

Ibrahim Abdelaziz∗, Srinivas Ravishankar∗, Pavan Kapanipathi∗, Salim Roukos, Alexander Gray
IBM Research

IBM T.J. Watson Research Center
Yorktown Heights, NY, USA

{ibrahim.abdelaziz1, srini, alexander.gray}@ibm.com, {kapanipa, roukos}@us.ibm.com

Abstract

Knowledge Base Question Answering (KBQA) is a task where
existing techniques have faced significant challenges, such as
the need for complex question understanding, reasoning, and
large training datasets. In this work, we demonstrate Deep
Thinking Question Answering (DTQA), a semantic parsing
and reasoning-based KBQA system. DTQA (1) integrates mul-
tiple, reusable modules that are trained specifically for their
individual tasks (e.g. semantic parsing, entity linking, and rela-
tionship linking), eliminating the need for end-to-end KBQA
training data; (2) leverages semantic parsing and a reasoner for
improved question understanding. DTQA is a system of sys-
tems that achieves state-of-the-art performance on two popular
KBQA datasets.

Introduction
The goal of Knowledge Base Question Answering is to an-
swer natural language questions over Knowledge Bases (KB)
such as DBpedia (Auer et al. 2007) and Wikidata (Vrandečić
and Krötzsch 2014). Existing approaches to KBQA are ei-
ther (i) graph-driven (Diefenbach et al. 2020; Vakulenko
et al. 2019), or (ii) end-to-end learning (Sun et al. 2020)
approaches. Graph-driven approaches attempt to find a best-
match KB sub-graph for the given question, whereas end-to-
end learning approaches, requiring large amounts of training
data, directly predict a query sequence (i.e. SPARQL or SQL)
from the input question. Both categories still suffer from a
number of challenges, including complex question under-
standing, scarcity of end-to-end training data, and the need
for reasoning.

In this work, we demonstrate DTQA; a semantic-parsing
and reasoning-based KBQA system. DTQA begins by parsing
the natural language question into Abstract Meaning Repre-
sentation (AMR), which is a symbolic formalism that cap-
tures rich semantic information from natural language. The
use of AMR enables task-independent language understand-
ing, which DTQA leverages to answer structurally complex
questions. Next, our system uses a triples-based approach
that builds on state-of-the-art entity and relation linking mod-
ules to align the AMR graph with the underlying KB and
produce logic forms. This step accurately maps AMR and its

∗Equal contribution
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

associated PropBank information to a KB such as DBpedia.
Finally, the logic forms are used by Logical Neural Network
(LNN) (Riegel et al. 2020), a neuro-symbolic reasoner that
enables DTQA to perform different types of reasoning. DTQA
comprises several modules which operate within a pipeline
and are individually trained for their specific tasks.

This demonstration shows an interpretable methodology
for KBQA that achieves state-of-the-art results on two promi-
nent datasets (QALD-9, LC-QuAD-1). DTQA is a system of
systems that demonstrates: (1) the use of task-general seman-
tic parsing via AMR; (2) an approach that aligns AMR to KB
triples; and (3) the use of a neuro-symbolic reasoner for the
KBQA task.

DTQA System
Figure 1 shows an overview of DTQA with an example ques-
tion. The input to DTQA is the question text, which is first
parsed using the Abstract Meaning Representation (AMR)
parser (Banarescu et al. 2013; Dorr, Habash, and Traum
1998). AMR is a semantic parse representation that solves
the ambiguity of natural language by representing syntacti-
cally different sentences with the same underlying meaning
in the same way. An AMR parse of a sentence is a rooted,
directed, acyclic graph expressing “who is doing what to
whom”. We use the current state-of-the-art system for AMR
that leverage transition-based (Naseem et al. 2019) parsing
approach, parameterized with neural networks and trained
in an end-to-end fashion. AMR parses are KB independent,
however an essential task to solve KBQA using AMR is to
align the AMR parses with the knowledge base. Therefore, in
the next three modules we align the AMR parse to a DBpedia
sub-graph that can be transformed into a SPARQL query.

First, DTQA uses an Entity Extraction and Linking (EL)
module that extracts entities and types and links them to their
corresponding KB URIs. Given a question such as Which ac-
tors starred in Spanish movies produced by Benicio del Toro?,
the EL module will link the AMR nodes of Benicio del Toro,
and Spanish to dbr:Benicio del Toro and dbr:Spain, respec-
tively. In DTQA, we trained a BERT-based neural mention
detection and used BLINK (Devlin et al. 2018) for disam-
biguation of named entities.

Aligning the AMR graph to the underlying KB is a chal-
lenge, particularly due to structural and granularity mismatch
between AMR and KBs such as DBPedia. The PropBank

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15985

pro
du
ce-
01

db
o:p

rod
uce

r

star-01
dbo:starring

mo
d.c
ou
ntr
y

db
o:c
ou
ntr

y

Which actors
starred in Spanish
movies produced
by Benicio del
Toro?

star-01

person

arg1

movie

produce-01

“Benicio
del Toro”

person

country

“Spain”

arg1

arg0

mod

arg2

name

name

AMR Parser Entity Linking Relation Linking
Input

Question

Semantic Parsing

dbr:Benicio_del_Toro

dbr:Spain

AMR to
Logic

Logical Neural
Networks (LNN)

Reasoning

arg ∃z (type(x, dbo:Film) ^ country(x, dbr:Spain) ^
producer(x, dbr:Benicio_del_Toro) ^

starring(x, z) ^ type(z, Person))

SELECT DISTINCT ?uri WHERE {
?film rdf:type dbo:Film ;

dbo:country dbr:Spain ;
dbo:producer dbr:Benicio_del_Toro ;
dbo:starring ?uri .

}

SPARQL

Logic AMR

AMR to KG Triples

Path 1
act-01

arg0

unknown
mod

unknown movie

Spain

star-01
dbo:starring

unknown movie

Benicio
del Toro

Path 2

Figure 1: DTQA architecture, illustrated via examples

frames in AMR are n-ary predicates whereas relationships
in KBs are predominantly binary. In order to transform the
n-ary predicates to binary, we use a novel ‘Path-based Triple
Generation’ module that transforms the AMR graph (with
linked entities) into a set of triples where each has one to
one correspondence with constraints in the SPARQL query.
The main idea of this module is to find paths between the
question amr-unknown to every linked entity and hence avoid
generating unnecessary triples. For the example in Figure 1,
this approach will generate the following two paths:

1. amr-unknown → star-01 → movie → country → Spain
2. amr-unknown → star-01 → movie → produce-01 → Beni-

cio del Toro.
Note that the predicate act-01 in the AMR graph is irrel-

evant, since it is not on the path between amr-unknown and
the entities, and hence ignored.

Furthermore, AMR parse provides relationship informa-
tion that is generally more fine-grained than the KB. To
address this granularity mismatch, the path-based triple gen-
eration collapses multiple predicates occurring consecutively
into a single edge. For example, in the question “In which
ancient empire could you pay with cocoa beans? “, the path
consists of three predicates between amr-unknown and cocoa
bean; (location, pay-01, instrument). These are collapsed into
a single edge, and the result is amr-unknown → location |
pay-01| instrument → cocoa-bean.

Next, the (collapsed) AMR predicates from the triples are
mapped to relationships in the KB using the Relation Extrac-
tion and Linking (REL) module. As seen in Figure 1, the
REL module maps star-01 and produce-01 to DBpedia rela-
tions dbo:starring and dbo:producer, respectively. For this
task, DTQA uses SLING (Mihindukulasooriya et al. 2020);
the state-of-the-art REL system for KBQA. SLING takes as
input the AMR graph with linked entities and extracted paths
obtained from the upstream modules. It relies on an ensem-
ble of complementary relation linking approaches to produce
a top-k list of KB relations for each AMR predicate. The
most relevant and novel approach in SLING is its statistical

mapping of an AMR predicate to its semantically equivalent
relation from the underlying KB using a distant supervision
dataset. Apart from this statistical co-occurrence informa-
tion, the rich lexical information in the AMR predicate and
question text is also leveraged by SLING. This is captured
by a neural-model and an unsupervised semantic similarity
module that measures similarity of each AMR predicate with
a list of possible relations using GloVe (Pennington, Socher,
and Manning 2014) embeddings.

The AMR to Logic module is a rule-based system that
transforms the KB-aligned AMR paths to a logical formalism
to support binary predicates and higher-order functional pred-
icates (e.g. for aggregation and manipulation of sets). This
logic formalism has a deterministic mapping to SPARQL by
introducing SPARQL constructs such as COUNT, ORDER
BY, and FILTER.

Some questions in KBQA datasets require reasoning. How-
ever, existing KBQA systems (Diefenbach et al. 2020; Vaku-
lenko et al. 2019; Sun et al. 2020) do not have a modular
reasoner to perform logical reasoning using the information
available in the knowledge base. In DTQA, the final mod-
ule is a logical reasoner called Logical Neural Networks
(LNN) (Riegel et al. 2020). LNN is a neural network architec-
ture in which neurons model a rigorously defined notion of
weighted fuzzy or classical first-order logic. LNN takes as in-
put the logic forms from AMR to Logic and has access to the
KB to provide an answer. LNN retrieves predicate groundings
via its granular SPARQL integration and performs type-based,
and geographic reasoning based on the ontological informa-
tion available in the knowledge base. LNN allowed us to
manually add generic axioms for the geographic reasoning
scenarios.

Experimental Evaluation
To evaluate DTQA, we use two prominent KBQA datasets;
QALD - 9 (Ngomo 2018) and LC-QuAD 1.0 (Trivedi et al.
2017). The latest version of QALD-9 contains 150 test ques-
tions whereas LC-QuAD test set contains 1,000 questions.

15986

Dataset P R F F1 QALD
WDAqua QALD 26.09 26.7 24.99 28.87
gAnswer QALD 29.34 32.68 29.81 42.96
DTQA QALD 31.41 32.16 30.88 45.33

WDAqua LC-QuAD 22.00 38.00 28.00 –
QAMP LC-QuAD 25.00 50.00 33.00 –
DTQA LC-QuAD 33.94 34.99 33.72 –

Table 1: DTQA performance on QALD-9 and LC-QuAD 1.0

We compare DTQA against three KBQA systems: 1) GAn-
swer (Zou et al. 2014) is a graph-driven approach and the
state-of-the-art on QALD dataset, 2) QAmp (Vakulenko et al.
2019) is another graph-driven approach based on message
passing. QAmp is also state-of-the-art on LC-QuAD dataset,
and 3) WSDAqua-core1 (Diefenbach et al. 2020) which to
the best of our knowledge, is the only approach evaluated on
both QALD and LC-QuAD.
Results: Table 1 shows the performance of DTQA on QALD
and LC-QuAD datasets. It shows the standard precision, re-
call and F-score metrics for each system. We also report
Macro-F1-QALD (Usbeck et al. 2015), a recommended met-
ric to use for evaluating QALD dataset. DTQA achieves state-
of-the-art performance on all metrics, outperforming existing
graph-driven approaches such as gAnswer, WDAqua, and
QAmp on both datasets.

By utilizing AMR to get the semantic representation of
the question, DTQA is able to generalize to sentence struc-
tures that come from very different distributions, and achieve
state-of-the-art performance on both datasets. DTQA enables
opportunities for reasoning by transforming text to a logic
form that can be used by LNN (a neuro-symbolic reasoner).

Demonstration and Conclusion
DTQA is a system of systems trained for different sub-
problems that has achieved the state-of-the art performance
on two prominent KBQA datasets. The system demonstrates
an interpretable methodology for understanding the natural
language question and reasoning to infer the answer from the
KB. To the best of our knowledge, DTQA is the first system
that successfully harnesses a generic semantic parser with
a neuro-symbolic reasoner for a KBQA task and a novel
path-based approach to map AMR to the underlying KG.

References
Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak,
R.; and Ives, Z. 2007. Dbpedia: A nucleus for a web of open
data. In The semantic web, 722–735. Springer.

Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt,
K.; Hermjakob, U.; Knight, K.; Koehn, P.; Palmer, M.; and
Schneider, N. 2013. Abstract meaning representation for
sembanking. In Proceedings of the 7th linguistic annotation
workshop and interoperability with discourse, 178–186.

Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2018.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. CoRR abs/1810.04805. URL
http://arxiv.org/abs/1810.04805.

Diefenbach, D.; Both, A.; Singh, K.; and Maret, P. 2020.
Towards a question answering system over the semantic web.
Semantic Web (Preprint): 1–19.
Dorr, B.; Habash, N.; and Traum, D. 1998. A thematic
hierarchy for efficient generation from lexical-conceptual
structure. In Conference of the Association for Machine
Translation in the Americas, 333–343. Springer.
Mihindukulasooriya, N.; Rossiello, G.; Kapanipathi, P.; Ab-
delaziz, I.; Ravishankar, S.; Yu, M.; Gliozzo, A.; Roukos, S.;
and Gray, A. 2020. Leveraging Semantic Parsing for Relation
Linking over Knowledge Bases. In Proceedings of the 19th
International Semantic Web Conference (ISWC2020).
Naseem, T.; Shah, A.; Wan, H.; Florian, R.; Roukos, S.; and
Ballesteros, M. 2019. Rewarding Smatch: Transition-Based
AMR Parsing with Reinforcement Learning. arXiv preprint
arXiv:1905.13370 .
Ngomo, N. 2018. 9th challenge on question answering over
linked data (QALD-9). language 7(1).
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language
processing (EMNLP), 1532–1543.
Riegel, R.; Gray, A.; Luus, F.; Khan, N.; Makondo, N.; Akhal-
waya, I. Y.; Qian, H.; Fagin, R.; Barahona, F.; Sharma, U.;
Ikbal, S.; Karanam, H.; Neelam, S.; Likhyani, A.; and Srivas-
tava, S. 2020. Logical Neural Networks.
Sun, H.; Arnold, A. O.; Bedrax-Weiss, T.; Pereira, F.; and
Cohen, W. W. 2020. Faithful Embeddings for Knowledge
Base Queries.
Trivedi, P.; Maheshwari, G.; Dubey, M.; and Lehmann, J.
2017. Lc-quad: A corpus for complex question answering
over knowledge graphs. In International Semantic Web Con-
ference, 210–218. Springer.
Usbeck, R.; Röder, M.; Ngonga Ngomo, A.-C.; Baron, C.;
Both, A.; Brümmer, M.; Ceccarelli, D.; Cornolti, M.; Cherix,
D.; Eickmann, B.; et al. 2015. GERBIL: general entity anno-
tator benchmarking framework. In Proceedings of the 24th
international conference on World Wide Web, 1133–1143.
Vakulenko, S.; Fernandez Garcia, J. D.; Polleres, A.; de Rijke,
M.; and Cochez, M. 2019. Message passing for complex
question answering over knowledge graphs. In Proceedings
of the 28th ACM International Conference on Information
and Knowledge Management, 1431–1440.
Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the ACM
57(10): 78–85.
Zou, L.; Huang, R.; Wang, H.; Yu, J. X.; He, W.; and Zhao,
D. 2014. Natural language question answering over RDF: a
graph data driven approach. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data,
313–324.

15987

